(3.238.36.32) 您好!臺灣時間:2021/02/27 10:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃際軒
研究生(外文):HUANG, JI-SHIUAN
論文名稱:鉬酸鉍修飾的功能化碳納米纖維和超聲輔助錨定GO的NiO納米粒子合成在電化學感測器上的應用
論文名稱(外文):Bismuth Molybdate Decorated Functionalized Carbon Nanofiber and Ultrasonic Assisted Synthesis of NiO Nanoparticles Anchored GO is Applied on Electrochemical Sensors
指導教授:陳生明
指導教授(外文):CHEN, SHEN-MING
口試委員:曾添文黃國林駱碧秀陳生明
口試委員(外文):TSENG, TIEN-WENHUANG, KUO-LINLOU, BIH-SHOWCHEN, SHEN-MING
口試日期:2020-07-09
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:70
中文關鍵詞:鉬酸鉍功能化碳奈米纖維2-硝基苯胺化學感測器真實樣品分析超聲波氧化鎳氧化石墨烯葡萄糖微奈米感應等級
外文關鍵詞:Bismuth molybdateFunctionalized carbon nanofiber2-nitroanilineChemical sensorReal sample analysisUltrasonicationNickel oxideGraphene oxideGlucoseNano-micro level sensing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:28
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
第一部分
這幾年具有成本效益的無機材料製造受到了各個領域研究人員的極大關注。在當前的工作中,我們研究了超聲輔助奈米氧化鎳粒子錨定氧化石墨烯奈米片(NiO / GO)的合成。通過各種物理化學方法對所得的NiO / GO進行表徵,並用於鹼性介質中葡萄糖的檢測。電化學結果表明,與其他修飾電極相比,NiO / GO修飾的GCE對葡萄糖的氧化具有更好的電催化活性。安培分析結果表明,NiO / GO修飾電極能夠檢測0.62 µM至2.4 mM的葡萄糖。而且所製造的感測器具有較低的檢測下限(0.17 µM),良好的選擇性和對葡萄糖檢測的高靈敏度。
第二部分
本研究開發一種新的感測平台,用於使用鉬酸鉍(Bi2MoO6,以下稱為BMO)支持的功能化的碳奈米纖維(F-CNF)修飾電極檢測水中的毒性有機汙染物(2-硝基苯胺)。鉬酸鉍支持功能化奈米纖維的合成有兩種不同的方法,沉澱法(C-BMO/f-CNF)和超音波法(U-BMO/f-CNF)。透過XRD、FTIR、拉曼光譜各種不同的分析方法成功的定義出C&U-BMO/f-CNF複合材料的物理性質。透過電化學檢驗的2-硝基苯胺(2-NA),是使用循環伏安法檢測C&U-BMO/f-CNF複合材料的電催化活性。使用U-BMO/f-CNF複合材料修飾的GCE具有良好的電催化活性及較低的檢測限制為0.048 µM、靈敏度為2.59 μAμM-1 cm-2。且U-BMO / f-CNF電極存在各種有機污染物和一些有毒金屬陽離子的情況下顯示出高選擇性,同時U-BMO/f-CNF合成物對2-NA檢測顯示出良好的穩定性和重複性。此外所提出的U-BMO / f-CNF複合材料還可以在土壤中實現良好的回收率和湖水的實際樣品中檢測達到感測器的實用性。


First part
In recent years, the cost-effective fabrication of inorganic materials has received considerable attention to the researchers working in various fields. In this current work, we report the ultrasonication assisted synthesis of nickel oxide nanoparticles anchored on graphene oxide nanosheets (NiO/GO). The obtained NiO/GO was characterized by various physicochemical methods and used for the detection of glucose in alkaline medium. The electrochemical results demonstrate that NiO/GO modified GCE had better electrocatalytic activity towards the oxidation of glucose than other modified electrodes. The amperometric results revealed that the NiO/GO modified electrode can able to detect the glucose from 0.62 µM to 2.4 mM. Also, the fabricated sensor has a lower limit of detection (0.17 µM), good selectivity, and high sensitivity towards the detection of glucose.
Second part
Herein, we developed a new sensing platform to detect the toxic organic pollutant (2-nitroaniline) in water samples using bismuth molybdate (Bi2MoO6, hereafter indicated as BMO) supported functionalized carbon nanofiber (f-CNF) modified electrode. The BMO supported f-CNF composite was prepared by two various methods like co-precipitation (C-BMO/f-CNF) and ultrasonication method (U-BMO/f-CNF). We utilize many analytical methods. That include XRD, FTIR and Raman spectroscopy. The C&U-BMO/f-CNF composites was characterized to obtain the physicochemical properties. The electrocatalytic activity of C&U-BMO/f-CNF composites were examined by CV through the electrochemical detection of 2-nitroaniline (2-NA). The U-BMO/f-CNF composite modified with GCE showed superior electrocatalytic activity with low detection limit (LOD) of 0.048 µM as well as sensitivity of 2.59 μAμM-1 cm-2. In addition, U-BMO/f-CNF electrode displayed noble selectivity in presence of various organic pollutants and some toxic metal cations, meanwhile the U-BMO/f-CNF composite showed good stability and repeatability towards the detection of 2-NA. Moreover, the proposed U-BMO/f-CNF composite also achieved good recovery in soil and lack water samples for the practicability of sensor in real samples.

摘要 i
ABSTRACT iii
致謝 v
目錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 電化學簡介 1
1.2 感測器 2
1.2.1 感測器的定義 2
1.2.2 化學感測器 3
1.3 修飾電極簡介 4
1.4 材料與藥品 5
1.4.1 氧化鎳 5
1.4.2 石墨烯 6
1.4.3 鉬酸鉍 8
1.4.4 2-硝基苯胺 8
第二章 實驗藥品、器材、分析手法 10
2.1 實驗藥品 10
2.2 實驗器材 11
2.3 分析方法 12
2.3.1 循環伏安法 (Cyclic voltammetry,CV) 12
2.3.2 安培法(Amperometric,I-t method) 14
2.3.3 傅立葉轉換紅外光譜儀(Fourier transform infrared spectroscopy,FTIR) 15
2.3.4 X射線繞射分析儀(X-ray Diffractometer,XRD) 16
2.3.5 能量散佈光譜儀 (Energy Dispersive Spctrometer,EDS) 17
第三章 超聲輔助錨定氧化石墨烯的一氧化鎳奈米顆粒的合成:超高靈敏度的無酶葡萄糖感測器 20
3.1前言 20
3.2實驗 21
3.2.1 材料和方法 21
3.2.2 氧化鎳(NiO)奈米粒子的合成 22
3.2.3 氧化石墨烯與NiO/GO複合材料的合成 22
3.2.4 NiO/GO修飾GCE的製備 23
3.2.5 NiO和NiO改性GCE的表徵 23
3.3結果與討論 24
3.3.1 XRD/Raman的分析 24
3.3.2 FTIR的分析 25
3.3.3 型態分析 26
3.3.4 元素分析 27
3.3.5 電化學性質 28
3.3.6 NiO/GO/GCE對葡萄糖的電化學性能 30
3.3.7 不同濃度和掃描速率對葡萄糖氧化的影響 31
3.3.8 安培法測定葡萄糖 34
3.3.9 真實樣品的分析 36
3.4結論 36
第四章鉬酸鉍修飾的功能化碳納米纖維的電催化研究用於精確檢測生活樣品中的有機污染物 38
4.1前言 38
4.2實驗 40
4.2.1 化學製品 40
4.2.2 鉬酸鉍(BMO)的合成 40
4.2.3 f-CNF的製備 41
4.2.4 U-BMO / f-CNF和C-BMO / f-CNF複合材料的製作與準備 41
4.2.5 電極的準備 .42
4.2.6 材料的表徵 42
4.3結果與討論 43
4.3.1 XRD分析 43
4.3.2 FTIR和拉曼分析 44
4.3.3 SEM和TEM分析 45
4.3.4 電化學性質 47
4.3.5 U-BMO/f-CNF的不同加載的影響 47
4.3.6 2-NA在各種電極上的電催化活性 48
4.3.7 增加2-NA溶液濃度的影響 50
4.3.8 增加掃描速率和PH的影響 51
4.3.9 在U-BMO / f-CNF / GCE中測定2-A 52
4.3.10 穩定性,重現性,重複性和真實樣品分 54
4.4結論 56
參考文獻 57

[1]維基百科,電化學,檢自
https://zh.wikipedia.org/wiki/%E7%94%B5%E5%8C%96%E5%AD%A6
[2]高士軒、翁艾慧,臨床醫療生物感測器發展及技術應用,生物感測器專刊第61卷第5期,2014
[3]陳詩喆,電流式葡萄糖生物感測器之製備及測試,碩士論文,國立台灣科技大學化學工程研究所,臺北,2009
[4]楊涵宇,利用生物相容性果膠、二氧化鋯、鉬酸鐿對奈米碳纖維、石墨烯合成奈米複合材料及其電化學分析與應用,碩士論文,國立台北科技大學化學工程與生物科技系化學工程碩士班,臺北,2018
[5]Principles, Designs and Applications in Biomedical Engineering Micro and Nano Technologies 2019, Pages 181-230
[6]趙子雲,以葡萄糖為碳源塗覆於氧化銅表面做為兒茶酚電化學感測電極材料之研究,碩士論文,國立台北科技大學化學工程與生物科技系化學工程碩士班,臺北,2018
[7]維基百科,一氧化鎳,檢自
https://zh.wikipedia.org/wiki/%E4%B8%80%E6%B0%A7%E5%8C%96%E9%95%8D
[8] Jie Tian, Sai Wu, Xianglu Yin, Wei Wu, Novel preparation of hydrophilic graphene/graphene oxide nanosheets for supercapacitor electrode, Applied Surface Science, Volume 496, 1 December 2019, 143696
[9]維基百科,石墨烯,檢自
https://zh.wikipedia.org/wiki/%E7%9F%B3%E5%A2%A8%E7%83%AF#cite_note-70
[10]蘇清源,石墨烯氧化物之特性與應用前景,物理雙月刊,2011
[11]張敏慧,利用鈀赤血鹽結合石墨烯氧化物及聚吡咯結合石墨烯/β-環糊精之複合材料製備尼古丁及二價汞電化學感測器,碩士論文,國立台北科技大學化學工程與生物科技系化學工程碩士班,臺北,2015
[12]Chemical book,鉬酸鉍,檢自
https://translate.google.com/translate?hl=zh-TW&sl=zh-CN&u=https://www.chemicalbook.com/NewsInfo_1401.htm&prev=search
[13]物竟數據庫,鉬酸鉍,檢自
http://www.basechem.org/chemical/18167
[14]維基百科,2-硝基苯胺,檢自
https://zh.wikipedia.org/wiki/%E9%82%BB%E7%A1%9D%E5%9F%BA%E8%8B%AF%E8%83%BA#%E5%BA%94%E7%94%A8
[15]洪毓翔,利用聚吡咯與硫化鋅修飾玻璃碳電極應用於4-氨基安替比林與亞硝酸離子檢測之研究,碩士論文,國立台北科技大學化學工程與生物科技系化學工程碩士班,臺北,2018
[16] 科學online 高瞻自然科學教育資源平台,X光繞射與布拉格定律(2011)。檢自http://highscope.ch.ntu.edu.tw/wordpress/?p=41141
[17]X. Zhuang, C. Tian, F. Luan, X. Wu and L. Chen, RSC Adv., 2016, 6, 92541–92546.
[18]M. El-Kemary, N. Nagy and I. El-Mehasseb, Mater. Sci. Semicond. Process., 2013, 16, 1747–1752.
[19]B. Yuan, C. Xu, D. Deng, Y. Xing, L. Liu, H. Pang and D. Zhang, Electrochim. Acta, 2013, 88, 708–712.
[20]S. Ci, T. Huang, Z. Wen, S. Cui, S. Mao, D. A. Steeber and J. Chen, Biosens. Bioelectron., 2014, 54, 251–257.
[21]X. Zhu, Q. Jiao, C. Zhang, X. Zuo, X. Xiao, Y. Liang and J. Nan, Microchim. Acta, 2013, 180, 477–483.
[22]B. Yuan, C. Xu, L. Liu, Q. Zhang, S. Ji, L. Pi, D. Zhang and Q. Huo, Electrochim. Acta, 2013, 104, 78–83.
[23]J. He, H. Lindström, A. Hagfeldt and S. E. Lindquist, J. Phys. Chem. B, 1999, 103, 8940–8943.
[24]M. Shamsipur, M. Najafi and M. R. M. Hosseini, Bioelectrochemistry, 2010, 77, 120–124.
[25]Y. Mu, D. Jia, Y. He, Y. Miao and H. L. Wu, Biosens. Bioelectron., 2011, 26, 2948–2952.
[26]F. Cao, S. Guo, H. Ma, D. Shan, S. Yang and J. Gong, Biosens. Bioelectron., 2011, 26, 2756–2760.
[27]S. Nagamuthu and K. S. Ryu, Sci. Rep., 2019, 9, 1–11.
[28]H. Li, L. Zhang, Y. Mao, C. Wen and P. Zhao, Nanoscale Res. Lett., , DOI:10.1186/s11671-019-2966-2.
[29]C. Guo, Y. Wang, Y. Zhao and C. Xu, Anal. Methods, 2013, 5, 1644–1647.
[30]R. Lindsay, B. G. Daniels and G. Thornton, Chapter 5 Geometry of adsorbates on metal oxide surfaces, Elsevier Masson SAS, 2001, vol. 9.
[31]F. Wang, X. Chen, L. Chen, J. Yang and Q. Wang, Mater. Sci. Eng. C, 2019, 96, 41–50.
[32]A. M. Azharudeen, R. Karthiga, M. Rajarajan and A. Suganthi, Arab. J. Chem., 2020, 13, 4053–4064.
[33]M. Hashem, E. Saion, N. M. Al-Hada, H. M. Kamari, A. H. Shaari, Z. A. Talib, S. B. Paiman and M. A. Kamarudeen, Results Phys., 2016, 6, 1024–1030.
[34]L. Shahhoseini, R. Mohammadi, B. Ghanbari and S. Shahrokhian, Appl. Surf. Sci., 2019, 478, 361–372.
[35]G. Wang, X. Lu, T. Zhai, Y. Ling, H. Wang, Y. Tong and Y. Li, Nanoscale, 2012, 4, 3123–3127.
[36]P. N. R. Kishore and P. Jeevanandam, J. Nanosci. Nanotechnol., 2013, 13, 2795–2803.
[37]N. N. M. Zorkipli, N. H. M. Kaus and A. A. Mohamad, Procedia Chem., 2016, 19, 626–631.
[38]R. Mishra, J. Militky and M. Venkataraman, Nanotechnol. Text. Theory Appl., 2018, 35.
[39]P. Kuiper, G. Kruizinga, J. Ghijsen, G. A. Sawatzky and H. Verweij, Phys. Rev. Lett., 1989, 62, 1214–1214.
[40]N. F. Mott, Proc. Phys. Soc. Sect. A, 1949, 62, 416–422.
[41]X. Sun, H. Lu, P. Liu, T. E. Rufford, R. R. Gaddam, X. Fan and X. S. Zhao, Sustain. Energy Fuels, 2018, 2, 673–678.
[42]C. F. Cheng, Y. M. Chen, F. Zou, K. C. Yang, T. Y. Lin, K. Liu, C. H. Lai, R. M. Ho and Y. Zhu, J. Mater. Chem. A, 2018, 6, 13676–13684.
[43]A. Roy, A. Ray, S. Saha, M. Ghosh, T. Das, B. Satpati, M. Nandi and S. Das, Electrochim. Acta, 2018, 283, 327–337.
[44]Q. Li, J. Guo, D. Xu, J. Guo, X. Ou, Y. Hu, H. Qi and F. Yan, Small, 2018, 14, 1–12.
[45]M. C. Ş, F. P. O. G. Ă. Cean, L. M. Ă. G. Ş. An, C. Socaci and S. Pruneanu, 2019, 13, 23–32.
[46]H. Ahmad, M. Fan and D. Hui, Compos. Part B Eng., 2018, 145, 270–280.
[47]Z. U. Khan, A. Kausar, H. Ullah, A. Badshah and W. U. Khan, J. Plast. Film Sheeting, 2016, 32, 336–379.
[48]A. T. Dideikin and A. Y. Vul’, Front. Phys., , DOI:10.3389/fphy.2018.00149.
[49]J. M. Burrin and K. G. M. M. Alberti, Diabet. Med., 1990, 7, 199–206.
[50]E. W. Nery, M. Kundys, P. S. Jeleń and M. Jönsson-Niedziólka, Anal. Chem., 2016, 88, 11271–11282.
[51]J. S. Krouwer and G. S. Cembrowski, J. Diabetes Sci. Technol., 2010, 4, 75–83.
[52]H. Huang, Y. Yue, Z. Chen, Y. Chen, S. Wu, J. Liao, S. Liu and H. rui Wen, Microchim. Acta, , DOI:10.1007/s00604-019-3299-7.
[53]M. Govindasamy, S. F. Wang, B. Subramanian, R. J. Ramalingam, H. Al-lohedan and A. Sathiyan, Ultrason. Sonochem., 2019, 58, 104622.
[54]M. Wang, J. Ma, X. Guan, W. Peng, X. Fan, G. Zhang, F. Zhang and Y. Li, J. Alloys Compd., 2019, 784, 827–833.
[55]D. M. Williams, S. N. Parsons, G. J. Dunseath, J. W. Stephens, S. D. Luzio and D. R. Owens, Diabetes Metab. Syndr. Clin. Res. Rev., 2020, 14, 101–106.
[56]B. Afandi, M. Hassanein, S. Roubi and N. Nagelkerke, Diabetes Res. Clin. Pract., 2019, 151, 260–264.
[57]D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu and J. M. Tour, ACS Nano, 2010, 4, 4806–4814.
[58]DD. Boikanyo, A. S. Adekunle and E. E. Ebenso, J. Nano Res., 2016, 44, 158.195.
[59]J. Yan, X. Liu and B. Li, Adv. Sci., , DOI:10.1002/advs.201600101.
[60]S. Sakthinathan, T. Kokulnathan, S. M. Chen, R. Karthik and T. W. Chiu, Inorg. Chem. Front., 2018, 5, 490–500.
[61]N. Karikalan, M. Velmurugan, S. M. Chen and C. Karuppiah, ACS Appl. Mater. Interfaces, 2016, 8, 22545–22553.
[62]L. Ma, X. Wang, Q. Zhang, X. Tong, Y. Zhang and Z. Li, Anal. Methods, 2018, 10, 3845–3850.
[63]L. Ding, J. Yan, Z. Zhao and D. Li, Sensors Actuators, B Chem., 2019, 296, 126705.
[64]C. Heyser, R. Schrebler and P. Grez, J. Electroanal. Chem., 2019, 832, 189–195.
[65]H. Yin, T. Zhan, J. Zhu, J. Chen, J. Gong, L. Wang and Q. Nie, J. Electroanal. Chem., 2019, 846, 113150.
[66]W. Mao, H. He, P. Sun, Z. Ye and J. Huang, ACS Appl. Mater. Interfaces, 2018, 10, 15088–15095.
[67]Y. Xu, L. Hou, H. Zhao, S. Bi, L. Zhu and Y. Lu, Appl. Surf. Sci., 2019, 463, 1028–1036.
[68]A. Lemaire, P. Hapiot, F. Geneste, Ti-Catalyst Biomimetic Sensor for the Detection of Nitroaromatic Pollutants, Anal. Chem. 91 (2019) 2797–2804. https://doi.org/10.1021/acs.analchem.8b04671.
[69]X.J. Zhang, F.Z. Su, D.M. Chen, Y. Peng, W.Y. Guo, C. Sen Liu, M. Du, A water-stable Eu III -based MOF as a dual-emission luminescent sensor for discriminative detection of nitroaromatic pollutants, Dalt. Trans. 48 , 2019, 1843–1849. https://doi.org/10.1039/c8dt04397c.
[70]E. Yabalak, Ö. Yilmaz, Eco-friendly approach to mineralise 2-nitroaniline using subcritical water oxidation method: use of ANN and RSM in the optimisation and modeling of the process, J. Iran. Chem. Soc. 16 , 2019, 117–126. https://doi.org/10.1007/s13738-018-1487-8.
[71]S.M. Sadeghzadeh, R. Zhiani, S. Emrani, The reduction of 4-nitrophenol and 2-nitroaniline by the incorporation of Ni@Pd MNPs into modified UiO-66-NH2 metal-organic frameworks (MOFs) with tetrathia-azacyclopentadecane, New J. Chem. 42 (2018) 988–994. https://doi.org/10.1039/c7nj03732e.
[72]T. Yokoyama, R.W. Taft, M.J. Kamlet, The Solvatochromic Comparison Method. 3. Hydrogen Bonding by Some 2-Nitroaniline Derivatives, J. Am. Chem. Soc. 98 (1976) 3233–3237. https://doi.org/10.1021/ja00427a030.
[73]T. Yokoyama, Resonance and solvent effects on absorption spectra of 2-nitroaniline derivatives, Aust. J. Chem. 29, 1976, 1469–1475. https://doi.org/10.1071/CH9761469.
[74]S.D. Richardson, T.A. Ternes, Water analysis: Emerging contaminants and current issues, Anal. Chem. 83 (2011) 4616–4648. https://doi.org/10.1021/ac200915r.
[75]K. Naseem, R. Begum, Z.H. Farooqi, Catalytic reduction of 2-nitroaniline: a review, Environ. Sci. Pollut. Res. 24, 2017, 6446–6460. https://doi.org/10.1007/s11356-016-8317-2.
[76]K. Yang, W. Wu, Q. Jing, L. Zhu, Aqueous adsorption of aniline, phenol, and their substitutes by multi-walled carbon nanotubes, Environ. Sci. Technol. 42 (2008) 7931–7936. https://doi.org/10.1021/es801463v.
[77]P.C. Chen, W. Lo, K.H. Hu, Molecular structures of mononitroanilines and their thermal decomposition products, Theor. Chem. Acc. 95 (1997) 99–112. https://doi.org/10.1007/s002140050187.
[78]Z.H. Farooqi, K. Naseem, R. Begum, A. Ijaz, Catalytic Reduction of 2-Nitroaniline in Aqueous Medium Using Silver Nanoparticles Functionalized Polymer Microgels, J. Inorg. Organomet. Polym. Mater. 25 (2015) 1554–1568. https://doi.org/10.1007/s10904-015-0275-5.
[79]R. Liang, F. Jing, G. Yan, L. Wu, Synthesis of CdS-decorated MIL-68(Fe) nanocomposites: Efficient and stable visible light photocatalysts for the selective reduction of 4-nitroaniline to p-phenylenediamine in water, Appl. Catal. B Environ. 218 (2017) 452–459. https://doi.org/10.1016/j.apcatb.2017.06.075.
[80]N. Karikalan, S. Kubendhiran, S.M. Chen, P. Sundaresan, R. Karthik, Electrocatalytic reduction of nitroaromatic compounds by activated graphite sheets in the presence of atmospheric oxygen molecules, J. Catal. 356 (2017) 43–52. https://doi.org/10.1016/j.jcat.2017.09.012.
[81]X. Chen, B. Chen, Macroscopic and spectroscopic investigations of the adsorption of nitroaromatic compounds on graphene oxide, reduced graphene oxide, and graphene nanosheets, Environ. Sci. Technol. 49 (2015) 6181–6189. https://doi.org/10.1021/es5054946.
[82]Y. Ma, S. Wang, L. Wang, Nanomaterials for luminescence detection of nitroaromatic explosives, TrAC - Trends Anal. Chem. 65 (2015) 13–21. https://doi.org/10.1016/j.trac.2014.09.007.
[83]Y.F. Jing, B.F. Long, Q. Huang, Y. Mi, Y.K. Gao, F.L. Hu, Ln-incorporated coordination complexes as fluorescence sensor for selective detection nitroaromatic compounds, Mater. Chem. Phys. 232 (2019) 152–159. https://doi.org/10.1016/j.matchemphys.2019.04.068.
[84]M. Abinaya, K. Saravanakumar, E. Jeyabharathi, V. Muthuraj, Synthesis and Characterization of 1D-MoO3 Nanorods Using Abutilon indicum Extract for the Photoreduction of Hexavalent Chromium, J. Inorg. Organomet. Polym. Mater. 29 (2019) 101–110. https://doi.org/10.1007/s10904-018-0970-0.
[85]H.S. Shin, G.W. Seo, K. Kwon, K.N. Jung, S.I. Lee, E. Choi, H. Kim, J.H. Hwang, J.W. Lee, A combined approach for high-performance Li-O2 batteries: A binder-free carbon electrode and atomic layer deposition of RuO2 as an inhibitor-promoter, APL Mater. 6 (2018). https://doi.org/10.1063/1.5009399.
[86]T. Watcharatharapong, M. Minakshi Sundaram, S. Chakraborty, D. Li, G.M. Shafiullah, R.D. Aughterson, R. Ahuja, Effect of Transition Metal Cations on Stability Enhancement for Molybdate-Based Hybrid Supercapacitor, ACS Appl. Mater. Interfaces. 9 (2017) 17977–17991. https://doi.org/10.1021/acsami.7b03836.
[87]M. Abinaya, R. Rajakumaran, S.M. Chen, R. Karthik, V. Muthuraj, In Situ Synthesis, Characterization, and Catalytic Performance of Polypyrrole Polymer-Incorporated Ag2MoO4 Nanocomposite for Detection and Degradation of Environmental Pollutants and Pharmaceutical Drugs, ACS Appl. Mater. Interfaces. 11 (2019) 38321–38335. https://doi.org/10.1021/acsami.9b13682.
[88]R. Rajakumaran, M. Abinaya, S.M. Chen, K. Balamurugan, V. Muthuraj, Ultrasonication and hydrothermal assisted synthesis of cloud-like zinc molybdate nanospheres for enhanced detection of flutamide, Ultrason. Sonochem. 61 (2020) 104823. https://doi.org/10.1016/j.ultsonch.2019.104823.
[89]M. Jin, S. Lu, L. Ma, M. Gan, One-step synthesis of in situ reduced metal Bi decorated bismuth molybdate hollow microspheres with enhancing photocatalytic activity, Appl. Surf. Sci. 396 (2017) 438–443. https://doi.org/10.1016/j.apsusc.2016.10.173.
[90]Z. Yang, M. Shen, K. Dai, X. Zhang, H. Chen, Controllable synthesis of Bi 2 MoO 6 nanosheets and their facet-dependent visible-light-driven photocatalytic activity, Appl. Surf. Sci. 430 (2018) 505–514. https://doi.org/10.1016/j.apsusc.2017.08.072.
[91]X. Zhai, J. Gao, R. Xue, X. Xu, L. Wang, Q. Tian, Y. Liu, Facile synthesis of Bi2MoO6/reduced graphene oxide composites as anode materials towards enhanced lithium storage performance, J. Colloid Interface Sci. 518 (2018) 242–251. https://doi.org/10.1016/j.jcis.2018.02.012.
[92]E. Luévano-Hipólito, A.M.D. La Cruz, Q.L. Yu, H.J.H. Brouwers, Photocatalytic removal of nitric oxide by Bi2Mo 3O12 prepared by co-precipitation method, Appl. Catal. A Gen. 468 (2013) 322–326. https://doi.org/10.1016/j.apcata.2013.09.013.
[93]L. Cheng, L. Liu, D. Wang, F. Yang, J. Ye, Synthesis of bismuth molybdate photocatalysts for CO 2 photo-reduction, J. CO2 Util. 29 (2019) 196–204. https://doi.org/10.1016/j.jcou.2018.12.013.
[94]X. Jiang, S. Song, J. Guo, W. Lv, Y. Li, X. Guo, X. Wang, H. Liu, Y. Han, L. Wang, Solid-state synthesis and fluorescence properties of micron Bi2MoO6:Eu3+/C3N4 composite phosphors, Phys. Lett. Sect. A Gen. At. Solid State Phys. 384 (2020) 126149. https://doi.org/10.1016/j.physleta.2019.126149.
[95]L. Xie, J. Ma, G. Xu, Preparation of a novel Bi2MoO6 flake-like nanophotocatalyst by molten salt method and evaluation for photocatalytic decomposition of rhodamine B, Mater. Chem. Phys. 110 (2008) 197–200. https://doi.org/10.1016/j.matchemphys.2008.01.035.
[96]G. Çelik Gül, F. Kurtuluş, Cr and Co doped Cs5Bi(MoO4)4: Microwave assisted synthesis, characterization and specification of optical properties, Optik (Stuttg). 132, 2017, 153–163. https://doi.org/10.1016/j.ijleo.2016.12.046.
[97]M.T. Le, V.H. Do, D.D. Truong, N.N. Pham, Sol–Gel Synthesis of Bismuth Molybdate Catalysts for the Selective Oxidation of Propylene to Acrolein: Influence of pH Value and Theoretical Molar Atomic Ratio, J. Chinese Chem. Soc. 64, 2017, 1326–1332. https://doi.org/10.1002/jccs.201700178.
[98]A. Yamuna, P. Sundaresan, S.M. Chen, Ethylcellulose assisted exfoliation of graphite by the ultrasound emulsification: An application in electrochemical acebutolol sensor, Ultrason. Sonochem. 59, 2019, 104720. https://doi.org/10.1016/j.ultsonch.2019.104720.
[99]H. Yi, Z. Yang, X. Tang, S. Zhao, F. Gao, J. Wang, Y. Huang, Y. Ma, C. Chu, Novel synthesis of MeOx (Ni, Cu, La)@Nano-Co3O4 from combination of complexation and impregnation in ultrasonic intervention for low temperature oxidation of toluene under microwave radiation, Ultrason. Sonochem. 40 (2018) 543–551. https://doi.org/10.1016/j.ultsonch.2017.07.047.
[100]A. Martínez-de la Cruz, S. Obregón Alfaro, Synthesis and characterization of γ-Bi2MoO6 prepared by co-precipitation: Photoassisted degradation of organic dyes under vis-irradiation, J. Mol. Catal. A Chem. 320, 2010, 85–91. https://doi.org/10.1016/j.molcata.2010.01.008.
[101]C. Zhu, H. Li, S. Fu, D. Du, Y. Lin, Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures, Chem. Soc. Rev. 45, 2016, 517–531. https://doi.org/10.1039/c5cs00670h.
[102]M. Hu, Z. Yao, X. Wang, Graphene-Based Nanomaterials for Catalysis, Ind. Eng. Chem. Res. 56 (2017) 3477–3502. https://doi.org/10.1021/acs.iecr.6b05048.
[103]Y. Zhai, Z. Zhu, S. Dong, Carbon-Based Nanostructures for Advanced Catalysis, ChemCatChem. 7 (2015) 2806–2815. https://doi.org/10.1002/cctc.201500323.
[104]C. Yang, M.E. Denno, P. Pyakurel, B.J. Venton, Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review, Anal. Chim. Acta. 887 (2015) 17–37. https://doi.org/10.1016/j.aca.2015.05.049.
[105]N. Saba, M.T. Paridah, K. Abdan, N.A. Ibrahim, A review on nano fibre technology in polymer composites, Pertanika J. Sci. Technol. 25 (2017) 1051–1072.
[106]S.S. Yao, F.L. Jin, K.Y. Rhee, D. Hui, S.J. Park, Recent advances in carbon-fiber-reinforced thermoplastic composites: A review, Compos. Part B Eng. 142 (2018) 241–250. https://doi.org/10.1016/j.compositesb.2017.12.007.
[107]M. Herraiz, M. Dubois, N. Batisse, E. Petit, P. Thomas, Exfoliated fluorinated carbons with a low and stable friction coefficient, RSC Adv. 9 (2019) 13615–13622. https://doi.org/10.1039/c9ra01267b.
[108]P. Sahoo, J.B. Tan, Z.M. Zhang, S.K. Singh, T.B. Lu, Engineering the Surface Structure of Binary/Ternary Ferrite Nanoparticles as High-Performance Electrocatalysts for the Oxygen Evolution Reaction, ChemCatChem. 10 (2018) 1075–1083. https://doi.org/10.1002/cctc.201701790.
[109]B. Quan, X. Liang, X. Zhang, G. Xu, G. Ji, Y. Du, Functionalized Carbon Nanofibers Enabling Stable and Flexible Absorbers with Effective Microwave Response at Low Thickness, ACS Appl. Mater. Interfaces. 10, 2018, 41535–41543. https://doi.org/10.1021/acsami.8b16088.
[110]W. Tamakloe, D.A. Agyeman, M. Park, J. Yang, Y.M. Kang, Polydopamine-induced surface functionalization of carbon nanofibers for Pd deposition enabling enhanced catalytic activity for the oxygen reduction and evolution reactions, J. Mater. Chem. A. 7, 2019, 7396–7405. https://doi.org/10.1039/C9TA00025A.
[111]Z. He, Y. Jiang, Y. Li, J. Zhu, H. Zhou, W. Meng, L. Wang, L. Dai, Carbon layer-exfoliated, wettability-enhanced, SO3H-functionalized carbon paper: A superior positive electrode for vanadium redox flow battery, Carbon N. Y. 127, 2018, 297–304. https://doi.org/10.1016/j.carbon.2017.11.006.
[112]S. Ramaraj, S. Mani, S.M. Chen, T. Kokulnathan, B.S. Lou, M.A. Ali, A.A. Hatamleh, F.M.A. Al-Hemaid, Synthesis and application of bismuth ferrite nanosheets supported functionalized carbon nanofiber for enhanced electrochemical detection of toxic organic compound in water samples, J. Colloid Interface Sci. 514, 2018, 59–69. https://doi.org/10.1016/j.jcis.2017.12.016.
[113]R. Gruar, C.J. Tighe, L.M. Reilly, G. Sankar, J.A. Darr, Tunable and rapid crystallisation of phase pure Bi2MoO 6 (koechlinite) and Bi2Mo3O12 via continuous hydrothermal synthesis, Solid State Sci. 12, 2010, 1683–1686. https://doi.org/10.1016/j.solidstatesciences.2010.07.001.
[114]M. Sakthivel, S. Ramaraj, S.M. Chen, B. Dinesh, H.V. Ramasamy, Y.S. Lee, Entrapment of bimetallic CoFeSe2 nanosphere on functionalized carbon nanofiber for selective and sensitive electrochemical detection of caffeic acid in wine samples, Anal. Chim. Acta. 1006, 2018, 22–32. https://doi.org/10.1016/j.aca.2017.12.044.
[115]A.D. Kiadehi, M. Jahanshahi, A. Rahimpour, S.A.A. Ghoreyshi, The effect of functionalized carbon nano-fiber (CNF) on gas separation performance of polysulfone (PSf) membranes, Chem. Eng. Process. Process Intensif. 90, 2015, 41–48. https://doi.org/10.1016/j.cep.2015.02.005.
[116]H.H. Li, K.W. Li, H. Wang, Hydrothermal synthesis and photocatalytic properties of bismuth molybdate materials, Mater. Chem. Phys. 116, 2009, 134–142. https://doi.org/10.1016/j.matchemphys.2009.02.058.
[117]X. Guo, J. Lv, W. Zhang, Q. Wang, P. He, Y. Fang, Separation and determination of nitroaniline isomers by capillary zone electrophoresis with amperometric detection, Talanta. 69, 2006, 121–125. https://doi.org/10.1016/j.talanta.2005.09.008.
[118]S.P. Wang, H.J. Chen, Separation and determination of nitrobenzenes by micellar electrokinetic chromatography and high-performance liquid chromatography, J. Chromatogr. A. 979, 2002, 439–446. https://doi.org/10.1016/S0021-9673(02)01435-8.
[119]A. Sarafraz-Yazdi, M.R. Abedi, Z. Es’Haghi, Pre-concentration and determination of β-blockers using carbon nanotube-assisted pseudo-stirbar hollow fiber solid-/liquid-phase microextraction and high-performance liquid chromatography with fluorescence detection, J. Liq. Chromatogr. Relat. Technol. 36, 2013, 750–769. https://doi.org/10.1080/10826076.2012.673212.
[120]J. Patsias, E. Papadopoulou-Mourkidou, Development of an automated on-line solid-phase extraction-high-performance liquid chromatographic method for the analysis of aniline, phenol, caffeine and various selected substituted aniline and phenol compounds in aqueous matrices, J. Chromatogr. A. 904, 2000, 171–188. https://doi.org/10.1016/S0021-9673(00)00927-4.
[121]Y. Zhu, M. Wang, H. Du, F. Wang, S. Mou, P.R. Haddad, Organic analysis by ion chromatography: 1. Determination of aromatic amines and aromatic diisocyanates by cation-exchange chromatography with amperometric detection, J. Chromatogr. A. 956, 2002, 215–220. https://doi.org/10.1016/S0021-9673(02)00238-8.
[122]C. Tong, Y. Guo, W. Liu, Simultaneous determination of five nitroaniline and dinitroaniline isomers in wastewaters by solid-phase extraction and high-performance liquid chromatography with ultraviolet detection, Chemosphere. 81, 2010, 430–435. https://doi.org/10.1016/j.chemosphere.2010.06.066.
[123]B. Muthukutty, A. Krishnapandi, S.M. Chen, M. Abinaya, A. Elangovan, Innovation of Novel Stone-Like Perovskite Structured Calcium Stannate (CaSnO3): Synthesis, Characterization, and Application Headed for Sensing Photographic Developing Agent Metol, ACS Sustain. Chem. Eng. 8, 2020, 4419–4430. https://doi.org/10.1021/acssuschemeng.9b07011.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔