(44.192.112.123) 您好!臺灣時間:2021/03/06 07:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:YANIKA JIARAPAKANON
研究生(外文):YANIKA JIARAPAKANON
論文名稱:利用萬能材料試驗機拉出穿透組織的倒鉤縫線觀察其倒鉤錨定表現以及倒鉤在組織中的保持力分析
論文名稱(外文):A Characteristic Observational Study the Anchoring Performance of a Barbed Suture in the Tissue for Lifting while Pulling out with Universal Testing Machine and Holding Strength Analysis
指導教授:方旭偉方旭偉引用關係
指導教授(外文):FANG, HSU-WEI
口試委員:蘇真瑩馬旭方旭偉
口試委員(外文):SU, CHEN-YINGMA, HSUFANG, HSU-WEI
口試日期:2020-07-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:94
中文關鍵詞:倒刺缝合錨固性能拉伸強度
外文關鍵詞:Barbed sutureAnchoring performanceTensile strength
相關次數:
  • 被引用被引用:0
  • 點閱點閱:25
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現今醫學美容盛行,尤其是用於臉部拉提的埋線拉提,利用帶有倒鉤的可吸收縫線,不需要動手術即可減少皺紋、使皮膚回春並且加強臉部輪廓線條。陽光中的紫外線造成皮膚層下膠原蛋白及彈性蛋白流失。埋線拉提是一種快速且具有長期效果的醫學美容方法,使用的倒鉤縫線是手術用的免打結縫合線,其表面帶有倒鉤。縫合組織的時候,這些倒鉤會刺入組織內部並且將組織鎖定到位,用於拉提可以將臉部組織提起並且提供支撐。萬能材料試驗機將穿透組織的倒鉤縫線從組織中提起並且拉出,會導致縫線表面的倒鉤以及組織受到阻力並且損傷。本研究藉由對於組織的倒鉤縫線特性觀察,分析影響倒鉤縫線效率之可能因素
Nowadays, esthetic treatment is extremely popular especially thread lift, to face lifting, reduce wrinkles, sagging skin, skin rejuvenation, and facial contouring with absorbable barbed suture without surgery. As a result of the loss of elastin and collagen under the skin layer and caused by ultraviolet A, ultraviolet B rays that are present in the sunlight. The thread lifts it is a rapid method and effective method in dissolve for a long duration. A barbed suture is a sort of knotless surgical suture that has barbs on its surface. While suturing tissue, these barbs penetrate inside the tissue and lock them into place and will support the facial tissues to lift the facial skin to not fall. And due to the penetration of barbed suture into the tissue to lifting while the barbed sutures are pulled out of the tissue by the Universal Material test machine will cause resistance and damage of barbed suture and tissues from experiments. And from the studying and observation of barbed suture characteristic of tissue which will lead to the analysis of factors affecting the efficiency of barbed suture.
Table of Contents
摘 要 i
ABSTRACT ii
Acknowledgement iii
List of Table xi
List of Figures xii
Chapter 1 Introduction 1
1.1 Preface 1
Chapter 2 Literature Review 2
2.1 Thread Lifting 2
2.1.1 Polydioxanone knotless thread lifting 4
2.2 Barbed suture 5
2.2.1 Barb as an alternative to surgical knots 6
2.3 Mechanical studies of barbed sutures 7
2.4 Barbed suture strength 8
2.5 Skin Closure 9
2.5.1 Superficial Muscular Aponeurotic System (SMAS) 9
2.5.2 Subcutaneous Fat 10
2.6 Tissue Tension in Suturing 11
2.6.1 Tissue Adhesives for Closure of Surgical Skin 11
Chapter 3 Key issues & Research method 16
3.1 Key issues 16
3.2 Research Methods Using in This Study 16
3.2.1 Tensile Strength 16
3.2.2 Suture/Tissue Pullout Test 18
3.2.3 Testing and Characterization 19
3.2.4 Stress Relaxation 20
Chapter 4 Experiment Materials and Methods 21
4.1 Tissue Preparation 21
4.1.1 Sizes Control 21
4.1.2 SMAS Tissue 22
4.1.3 Subcutaneous Fat Layer 22
4.2 Materials 23
4.2.1 PDO Barbed Suture 23
4.2.2 PP monofilament thread 23
4.2.3 Suture size 24
4.2.4 Geometry of barb suture 25
4.3 Equipment and tools 26
4.3.1 Scalpel 26
4.3.2 Vernia caliper 26
4.3.3 Blunt needle 26
4.3.4 Fixation clamp gripper 27
4.3.5 Bottom clamp gripper three side views 27
4.4 Procedure 28
4.4.1 Specimen preparation 28
4.4.2 Fix specimen on the clamp gripper 28
4.5 Experimental procedure 30
4.5.1 Pre-speed test with PP monofilament thread 30
4.5.2 Pulling knot model out of SMAS tissue layer with a speed test 300 mm/min 31
4.5.3 Pulling PDO barbed suture out of different tissue layer comparison with SMAS tissue and Subcutaneous fat tissue with non-commercial PDO barbed suture 32
4.5.4 Pulling out PDO barbed suture comparing with different commercial barbed suture 33
4.5.5 Pull-out PDO barbed suture comparing with different pull-out speed test 34
4.5.6 Pulling out PDO barbed suture comparing with different number of barbs on the PDO suture thread 35
Chapter 5 Results and Analysis 36
5.1 Tensile strength of pre-speed test with Polypropylene monofilament thread 36
5.1.1 Force-Displacement Result 36
5.1.2 Stress-Strain Result 38
5.1.3 Comparing force with different speed result 40
5.1.4 Young’s Modulus 40
5.2 Tensile strength of pulling speed 300mm/min with PP monofilament thread in different pattern blinding a knot 41
5.2.1 Tensile strength of pulling speed 300mm/min with PP monofilament thread in Part A. 41
5.2.2 Tensile strength of pulling speed 300mm/min with PP monofilament thread in Part B. 42
5.2.3 Tensile strength of pulling speed 300mm/min with PP monofilament thread in Part C. 43
5.2.4 Tensile strength of pulling speed 300mm/min with PP monofilament thread in Part D. 44
5.2.5 Stress-Strain Result 45
5.3 Tensile strength of pulling speed 100mm/min with PDO barbed suture that insert at different tissue layer between SMAS layer and Subcutaneous fat layer 48
5.3.1 Force-Displacement Result of PDO barbed suture at 1st SMAS tissue layer position 48
5.3.2 Force-Displacement Result of PDO barbed suture at 2nd SMAS tissue layer position 48
5.3.3 Force-Displacement Result of PDO barbed suture at 3rd SMAS tissue layer position 49
5.3.4 Force-Displacement Result of PDO barbed suture at 4th SMAS tissue layer position 49
5.3.5 Force-Displacement Result of PDO barbed suture at 5th SMAS tissue layer position 50
5.3.6 Comparison of Force-Displacement Result of PDO barbed suture in 5 experimental on SMAS tissue layer position 50
5.3.7 Stress-Strain Result of PDO barbed suture at 1st SMAS tissue layer position 51
5.3.8 Stress-Strain Result of PDO barbed suture at 2nd SMAS tissue layer position 51
5.3.9 Stress-Strain Result of PDO barbed suture at 3rd SMAS tissue layer position 52
5.3.10 Stress-Strain Result of PDO barbed suture at 4th SMAS tissue layer position 52
5.3.11 Stress-Strain Result of PDO barbed suture at 5th SMAS tissue layer position 53
5.3.12 Comparison of Stress-Strain Result of PDO barbed suture in 5 experimental on SMAS tissue layer position 53
5.3.13 Force-Displacement Result of PDO barbed suture at 1st Subcutaneous fat layer position 54
5.3.14 Force-Displacement Result of PDO barbed suture at 2nd Subcutaneous fat layer position 54
5.3.15 Force-Displacement Result of PDO barbed suture at 3rd Subcutaneous fat layer position 55
5.3.16 Force-Displacement Result of PDO barbed suture at 4th Subcutaneous fat layer position 55
5.3.17 Force-Displacement Result of PDO barbed suture at 5th Subcutaneous fat layer position 56
5.3.18 Comparison of Force-Displacement Result of PDO barbed suture in 5 experimental on Subcutaneous fat layer position 56
5.3.19 Stress-Strain Result of PDO barbed suture at 1st Subcutaneous fat layer position 57
5.3.20 Stress-Strain Result of PDO barbed suture at 2nd Subcutaneous fat layer position 57
5.3.21 Stress-Strain Result of PDO barbed suture at 3rd Subcutaneous fat layer position 58
5.3.22 Stress-Strain Result of PDO barbed suture at 4th Subcutaneous fat layer position 58
5.3.23 Stress-Strain Result of PDO barbed suture at 5th Subcutaneous fat layer position 59
5.3.24 Comparison of Stress-Strain Result of PDO barbed suture in 5 experimental on Subcutaneous fat layer position 59
5.3.25 Comparing force with different tissue result 60
5.3.26 Young’s Modulus 60
5.3.27 The physical characteristic changing of PDO barbed suture after pulling out of different tissue layer position 61
5.4 Tensile strength of pulling speed 100mm/min with compared with commercial barbed suture between Laya™ and Quill™ knotless tissue-closure device 62
5.4.1 Force-Displacement Result of Laya™ PDO barbed suture that pulling out of SMAS layer position (1st) 62
5.4.2 Force-Displacement Result of Laya™ PDO barbed suture that pulling out of SMAS layer position (2nd) 62
5.4.3 Comparison of Force-Displacement Result of Laya™ PDO barbed suture in SMAS layer position 63
5.4.4 The physical characteristic changing of Laya™ PDO barbed suture after pulling out of different tissue layer position 63
5.4.5 Stress- Strain result of Laya™ PDO barbed suture that pulling out of SMAS layer position (1st) 64
5.4.6 Stress- Strain result of Laya™ PDO barbed suture that pulling out of SMAS layer position (2nd) 64
5.4.7 Force-Displacement Result of Quill™ PDO barbed suture that pulling out of SMAS layer position (1st) 65
5.4.8 Force-Displacement Result of Quill™ PDO barbed suture that pulling out of SMAS layer position (2nd ) 65
5.4.9 Comparison of Force-Displacement Result of Quill™ PDO barbed suture in SMAS layer position 66
5.4.10 The physical characteristic changing of Quill™ PDO barbed suture after pulling out of different tissue layer position 66
5.4.11 Stress- Strain result of Quill™ PDO barbed suture that pulling out of SMAS layer position (1st) 67
5.4.12 Stress- Strain result of Quill™ PDO barbed suture that pulling out of SMAS layer position (2nd) 67
5.4.13 Comparing force with commercial barbed suture 68
5.4.14 Young’s Modulus 68
5.5 Tensile strength of PDO barbed suture comparing with different pull-out speed test in observation 69
5.5.1 Force-Displacement Result at pull-out speed 10 mm/min 69
5.5.2 Force-Displacement Result at pull-out speed 100 mm/min 69
5.5.3 Force-Displacement Result at pull-out speed 500 mm/min 70
5.5.4 Force-Displacement Result at pull-out speed 1,000 mm/min 70
5.5.5 Stress-strain result 71
5.5.6 Young’s Modulus 73
5.5.7 The physical characteristic changing of PDO barbed suture after pulling out of different speed test 74
5.6 Pulling out PDO barbed suture comparing with different number of barbs on the PDO barbed suture thread at pull-out test of SMAS by speed 100 mm/min. 78
5.6.1 Force-Displacement Result with the number of 14 barbs on the PDO barbed suture 78
5.6.2 Force-Displacement Result with the number of 28 barbs on the PDO barbed suture 78
5.6.3 Stress-stress results the number of 14 barbs on the PDO barbed suture 79
5.6.4 Stress-stress results the number of 28 barbs on the PDO barbed suture 79
79
5.6.5 Comparing force with different number of barbs on suture 80
5.6.6 Young’s Modulus 80
80
5.6.7 The physical characteristic changing of PDO barbed suture after pulling out of SMAS with different number of barbs on suture thread 81
Chapter 6 Discussion 83
6.1 Pre-Speed Test with PP Monofilament Thread 83
6.2 Pulling Knot Model Out of SMAS Tissue Layer with a Speed Test 300 mm/min 84
6.3 Pulling PDO Barbed Suture Out of Different Tissue Layer Comparison with SMAS Tissue and Subcutaneous Fat Tissue with Non-Commercial PDO Barbed Suture with Speed 100mm/min 85
6.4 Pulling out PDO Barbed Suture Comparing with Different Commercial Barbed Suture in SMAS Layer at 100 mm/min 85
6.5 Pulling Out PDO Barbed Suture Comparing with Different Pull-Out Speed Test 86
6.6 Pulling Out PDO Barbed Suture Comparing with Different Number of Barbs on the Suture Thread 86
Chapter 7 Conclusion 87
Bibliography 88


1.Tavares, Joana De Pinho, Carlos Augusto Costa Pires Oliveira, Rodolfo Prado Torres, and Fayez Bahmad. “Facial Thread Lifting with Suture Suspension.” Brazilian Journal of Otorhinolaryngology 83, no. 6 (2017): 712–19. https://doi.org/10.1016/j.bjorl.2017.03.015.
2.Gutowski, K.a. “Outcomes in Threadlift for Facial Rejuvenation.” Yearbook of Plastic and Aesthetic Surgery 2011 (2011): 153. https://doi.org/10.1016/s1535-1513(09)79488-3.
3.Sykes, Jonathan M., Sebastian Cotofana, Patrick Trevidic, Nowell Solish, Jean Carruthers, Alastair Carruthers, Amir Moradi, et al. “Upper Face.” Plastic and Reconstructive Surgery 136 (2015). https://doi.org/10.1097/prs.0000000000001830.
4.Ali, Yasser Helmy. “Two Years’ Outcome of Thread Lifting with Absorbable Barbed PDO Threads: Innovative Score for Objective and Subjective Assessment.” Journal of Cosmetic and Laser Therapy 20, no. 1 (2017): 41–49. https://doi.org/10.1080/14764172.2017.1368562.
5.Carruthers, Alastair, Joel L. Cohen, Sue Ellen Cox, Koenraad De Boulle, Steven Fagien, Charles J. Finn, Timothy Flynn, et al. “Facial Aesthetics: Achieving the Natural, Relaxed Look.” Journal of Cosmetic and Laser Therapy 9, no. sup1 (2007): 6–10. https://doi.org/10.1080/17429590701523927.
6.Ko, Audrey C., Bobby S. Korn, and Don O. Kikkawa. “The Aging Face.” Survey of Ophthalmology 62, no. 2 (2017): 190–202. https://doi.org/10.1016/j.survophthal.2016.09.002.
7.Baker, Daniel C. “Lateral SMASectomy, Plication and Short Scar Facelifts: Indications and Techniques.” Clinics in Plastic Surgery 35, no. 4 (2008): 533–50. https://doi.org/10.1016/j.cps.2008.06.003.
8.Kosowski, Tomasz R., Colleen Mccarthy, Patrick L. Reavey, Amie M. Scott, Edwin G. Wilkins, Stefan J. Cano, Anne F. Klassen, Nicholas Carr, Peter G. Cordeiro, and Andrea L. Pusic. “A Systematic Review of Patient-Reported Outcome Measures after Facial Cosmetic Surgery and/or Nonsurgical Facial Rejuvenation.” Plastic and Reconstructive Surgery 123, no. 6 (2009): 1819–27. https://doi.org/10.1097/prs.0b013e3181a3f361.
9.Sulamanidze, M.a., T.g. Paikidze, G.m. Sulamanidze, and Janet M. Neigel. “Facial Lifting with ‘APTOS’ Threads: Featherlift.” Otolaryngologic Clinics of North America 38, no. 5 (2005): 1109–17. https://doi.org/10.1016/j.otc.2005.05.005.
10.Rinaldi, Vittorio, Mario Mantovani, and Lorenzo Pignataro. “Barbed Suture Rescue Procedure.” Aesthetic Surgery Journal 37, no. 2 (2016): 250–52. https://doi.org/10.1093/asj/sjw096.
11.Matarasso, Alan, and Allen D. Rosen. “New and Emerging Uses of Barbed Suture Technology in Plastic Surgery.” Aesthetic Surgery Journal 33, no. 3_Supplement (2013). https://doi.org/10.1177/1090820x13500048.
12.Bertossi, Dario, Giovanni Botti, Alessandro Gualdi, Piero Fundarò, Riccardo Nocini, Ali Pirayesh, and Berend Van Der Lei. “Effectiveness, Longevity, and Complications of Facelift by Barbed Suture Insertion.” Aesthetic Surgery Journal 39, no. 3 (2018): 241–47. https://doi.org/10.1093/asj/sjy042.
13.Chia, Chang Yung, Marcelo Wilson Rocha Almeida, Patrícia Durgante Ritter, and Erik De Aquino Nery. “Malar Fat Pad Repositioning in Facelifting: A Simple Technique of Suspension and Fixation.” Aesthetic Surgery Journal 30, no. 6 (2010): 790–97. https://doi.org/10.1177/1090820x10381878.
14.Helmy, Yasser. “Outcome of Thread Lifting Technique for the Face Using Absorbable Barbed Polydioxanone Threads: Innovative Score for Objective and Subjective Assessment.” Plastic Surgery and Modern Techniques 3, no. 3 (2017). https://doi.org/10.29011/2577-1701.100019.
15.Wang, Cheng‐Kun. “Complications of Thread Lift about Skin Dimpling and Thread Extrusion.” Dermatologic Therapy, 2020. https://doi.org/10.1111/dth.13446.
16.Atiyeh, Bishara S, Saad A Dibo, Michel Costagliola, and Shady N Hayek. “Barbed Sutures ‘Lunch Time’ Lifting: Evidence-Based Efficacy.” Journal of Cosmetic Dermatology 9, no. 2 (2010): 132–41. https://doi.org/10.1111/j.1473-2165.2010.00495.x.
17.Dennis, Christopher, Swaminathan Sethu, Sunita Nayak, Loganathan Mohan, Yosry Yos Morsi, and Geetha Manivasagam. “Suture Materials - Current and Emerging Trends.” Journal of Biomedical Materials Research Part A 104, no. 6 (2016): 1544–59. https://doi.org/10.1002/jbm.a.35683.
18.Lee, Hyejeong, Kichan Yoon, and Munjae Lee. “Outcome of Facial Rejuvenation with Polydioxanone Thread for Asians.” Journal of Cosmetic and Laser Therapy 20, no. 3 (2017): 189–92. https://doi.org/10.1080/14764172.2017.1400167.
19.Vega, Jordi, Pau Golanó, Alexandro Pellegrino, Eduard Rabat, and Fernando Peña. “All-inside Arthroscopic Lateral Collateral Ligament Repair for Ankle Instability With a Knotless Suture Anchor Technique.” Foot & Ankle International 34, no. 12 (2013): 1701–9. https://doi.org/10.1177/1071100713502322.
20.Leung, Jeffrey C., Gregory L. Ruff, Martin W. King, and Philip P. Dattilo. “Barbed, Bi-Directional Surgical Sutures.” Medical Textiles and Biomaterials for Healthcare, 2006, 395–403. https://doi.org/10.1533/9781845694104.7.395.
21.Chen, Yen-Cheng, Ho-Hsiung Lin, and Sheng-Mou Hsiao. “Comparison of Robotic Assisted Laparoscopic Myomectomy with Barbed Sutures and Traditional Laparoscopic Myomectomy with Barbed Sutures.” Taiwanese Journal of Obstetrics and Gynecology 57, no. 5 (2018): 709–12. https://doi.org/10.1016/j.tjog.2018.08.017.
22.Kim, Min-Chan. “Laparoscopic Reinforcement Suture of Duodenal Stump Using Barbed Suture during Laparoscopic Gastrectomy for Gastric Cancer: Preliminary Results in Consecutive 62 Patients.” Annals of Laparoscopic and Endoscopic Surgery 2 (2017): 28–28. https://doi.org/10.21037/ales.2017.01.09.
23.Moran, Michael E., Catherine Marsh, and Michael Perrotti. “Bidirectional-Barbed Sutured Knotless Running Anastomosis v Classic Van Velthoven Suturing in a Model System.” Journal of Endourology 21, no. 10 (2007): 1175–78. https://doi.org/10.1089/end.2007.9913.
24.Murtha, Amy P., Andrew L. Kaplan, Michael J. Paglia, Benjie B. Mills, Michael L. Feldstein, and Gregory L. Ruff. “Evaluation of a Novel Technique for Wound Closure Using a Barbed Suture.” Plastic and Reconstructive Surgery 117, no. 6 (2006): 1769–80. https://doi.org/10.1097/01.prs.0000209971.08264.b0.
25.Delorenzi, C. “Barbed Sutures: Rationale and Technique.” Aesthetic Surgery Journal 26, no. 2 (2006): 223–29. https://doi.org/10.1016/j.asj.2006.01.009.
26.Marrero-Amadeo, Ian C., Aakash Chauhan, Stuart J. Warden, and Gregory A. Merrell. “Flexor Tendon Repair With a Knotless Barbed Suture: A Comparative Biomechanical Study.” The Journal of Hand Surgery 36, no. 7 (2011): 1204–8. https://doi.org/10.1016/j.jhsa.2011.04.003.
27.Rashid, Rashid, Mark Sartori, Lucile E. White, Mark T. Villa, Simon S. Yoo, and Murad Alam. “Breaking Strength of Barbed Polypropylene Sutures.” Archives of Dermatology 143, no. 7 (2007). https://doi.org/10.1001/archderm.143.7.869.
28.Leung, Jeffrey C., Gregory L. Ruff, Martin W. King, and Philip P. Dattilo. “Barbed, Bi-Directional Surgical Sutures.” Medical Textiles and Biomaterials for Healthcare, 2006, 395–403. https://doi.org/10.1533/9781845694104.7.395.
29.Cao, Ning-Yuan, Yu-Fu Liu, and Yutaka Kagawa. “Finite Element Analysis of a Barb Test for Thermal Barrier Coating Delamination Toughness Measurement.” Surface and Coatings Technology 202, no. 13 (2008): 3109–14. https://doi.org/10.1016/j.surfcoat.2007.11.012.
30.Zaruby, J., K. Gingras, J. Taylor, and D. Maul. “An In Vivo Comparison of Barbed Suture Devices and Conventional Monofilament Sutures for Cosmetic Skin Closure Biomechanical Wound Strength and Histology.” Aesthetic Surgery Journal 31, no. 2 (2011): 232–40. https://doi.org/10.1177/1090820x10395010.
31.Benito, Javier De, Roberto Pizzamiglio, Dimitris Theodorou, and Leyla Arvas. “Facial Rejuvenation and Improvement of Malar Projection Using Sutures with Absorbable Cones: Surgical Technique and Case Series.” Aesthetic Plastic Surgery 35, no. 2 (2010): 248–53. https://doi.org/10.1007/s00266-010-9570-2.
32.Rosen, Allen, and Teresa Hartman. “Repair of the Midline Fascial Defect in Abdominoplasty With Long-Acting Barbed and Smooth Absorbable Sutures.” Aesthetic Surgery Journal 31, no. 6 (2011): 668–73. https://doi.org/10.1177/1090820x11415242.
33.Elkousy, Hussein. “Knot Tying and Suture Passing.” Video Atlas of Shoulder Surgery, 2013, 14–14. https://doi.org/10.5005/jp/books/11787_3.
34.Marsidi, Nick, Sofieke A.m. Vermeulen, Tim Horeman, and Roel E. Genders. “Measuring Forces in Suture Techniques for Wound Closure.” Journal of Surgical Research 255 (2020): 135–43. https://doi.org/10.1016/j.jss.2020.05.033.
35.Ushiki, Tatsuo. “Collagen Fibers, Reticular Fibers and Elastic Fibers. A Comprehensive Understanding from a Morphological Viewpoint.” Archives of Histology and Cytology 65, no. 2 (2002): 109–26. https://doi.org/10.1679/aohc.65.109.
36.Sandulescu, T., H. Buechner, D. Rauscher, E.a Naumova, and W.-H Arnold. “Histological, SEM and Three-Dimensional Analysis of the Midfacial SMAS — New Morphological Insights.” Annals of Anatomy - Anatomischer Anzeiger 222 (2019): 70–78. https://doi.org/10.1016/j.aanat.2018.11.004.
37.Sandulescu, T., L. Spilker, D. Rauscher, E.a. Naumova, and W.h. Arnold. “Morphological Analysis and Three-Dimensional Reconstruction of the SMAS Surrounding the Nasolabial Fold.” Annals of Anatomy - Anatomischer Anzeiger 217 (2018): 111–17. https://doi.org/10.1016/j.aanat.2018.02.007.
38.Dʼarpa, Salvatore, Adriana Cordova, Roberto Pirrello, Giovanni Zabbia, Daniel Kalbermatten, and Francesco Moschella. “The Face Lift SMAS Plication Flap for Reconstruction of Large Temporofrontal Defects: Reconstructive Surgery Meets Cosmetic Surgery.” Plastic and Reconstructive Surgery 127, no. 5 (2011): 2068–75. https://doi.org/10.1097/prs.0b013e31820e92a0.
39.Joshi, Kritika. “SMAS Plication Facelift.” StatPearls [Internet]. U.S. National Library of Medicine, December 16, 2019. https://www.ncbi.nlm.nih.gov/books/NBK531458/.
40.Bucky, Louis P., and Suhail K. Kanchwala. “The Role of Autologous Fat and Alternative Fillers in the Aging Face.” Plastic and Reconstructive Surgery 120, no. Supplement (2007). https://doi.org/10.1097/01.prs.0000248866.57638.40.
41.Gierloff, M., C. Stöhring, T. Buder, and J. Wiltfang. “The Subcutaneous Fat Compartments in Relation to Aesthetically Important Facial Folds and Rhytides.” Journal of Plastic, Reconstructive & Aesthetic Surgery 65, no. 10 (2012): 1292–97. https://doi.org/10.1016/j.bjps.2012.04.047.
42.Alam, Murad, Lucile E. White, Nicolle Martin, Joslyn Witherspoon, Simon Yoo, and Dennis P. West. “Ultrasound Tightening of Facial and Neck Skin: A Rater-Blinded Prospective Cohort Study.” Journal of the American Academy of Dermatology 62, no. 2 (2010): 262–69. https://doi.org/10.1016/j.jaad.2009.06.039.
43.Burch, Jane, and Iain Mccallum. “How Do Tissue Adhesives Compare with Sutures or Staples for the Closure of Surgical Incisions?” Cochrane Clinical Answers, 2016. https://doi.org/10.1002/cca.842.
44.Burkhardt, Rino, and Niklaus P. Lang. “Influence of Suturing on Wound Healing.” Periodontology 2000 68, no. 1 (2015): 270–81. https://doi.org/10.1111/prd.12078.
45.Peters, W. S., and A. D. Tomos. “The History of Tissue Tension.” Annals of Botany 77, no. 6 (1996): 657–65. https://doi.org/10.1093/aob/77.6.657.
46.Bonner, R., and R. Nossal. “Model for Laser Doppler Measurements of Blood Flow in Tissue.” Applied Optics 20, no. 12 (1981): 2097. https://doi.org/10.1364/ao.20.002097.
47.B., Ananda B., Vikram J., Ramesh B. S., and Hosni Mubarak Khan. “A Comparative Study between Conventional Skin Sutures, Staples Adhesive Skin Glue for Surgical Skin Closure.” International Surgery Journal 6, no. 3 (2019): 775. https://doi.org/10.18203/2349-2902.isj20190489.
48.Mcnichol, Laurie, Carolyn Lund, Ted Rosen, and Mikel Gray. “Medical Adhesives and Patient Safety.” Journal of Wound, Ostomy and Continence Nursing 40, no. 4 (2013): 365–80. https://doi.org/10.1097/won.0b013e3182995516.
49.Volova, Tatiana, Ekaterina Shishatskaya, Viktor Sevastianov, Sergei Efremov, and Olga Mogilnaya. “Results of Biomedical Investigations of PHB and PHB/PHV Fibers.” Biochemical Engineering Journal 16, no. 2 (2003): 125–33. https://doi.org/10.1016/s1369-703x(03)00038-x.
50.Ende, E.d. Van Den, P.w.h.e. Vriens, J.h. Allema, and P.j. Breslau. “Adhesive Bonds or Percutaneous Absorbable Suture for Closure of Surgical Wounds in Children. Results of a Prospective Randomized Trial.” Journal of Pediatric Surgery 39, no. 8 (2004): 1249–51. https://doi.org/10.1016/j.jpedsurg.2004.04.013.
51.Basha, Suzanne L., Meredith L. Rochon, Joanne N. Quiñones, Kara M. Coassolo, Orion A. Rust, and John C. Smulian. “Randomized Controlled Trial of Wound Complication Rates of Subcuticular Suture vs Staples for Skin Closure at Cesarean Delivery.” American Journal of Obstetrics and Gynecology 203, no. 3 (2010). https://doi.org/10.1016/j.ajog.2010.07.011.
52.Feliciano, David V. “Pitfalls in the Management of Peripheral Vascular Injuries.” Trauma Surgery & Acute Care Open 2, no. 1 (2017). https://doi.org/10.1136/tsaco-2017-000110.
53.Liu, Sanwei, Sangwook Chu, George E. Banis, Luke A. Beardslee, and Reza Ghodssi. “Biomimetic Barbed Microneedles for Highly Robust Tissue Anchoring.” 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS), 2020. https://doi.org/10.1109/mems46641.2020.9056127.
54.Wang, Jiading, Ping Li, Qi Gu, Yuanjun Xu, and Tianfeng Gu. “Changes in Tensile Strength and Microstructure of Loess Due to Vibration.” Journal of Asian Earth Sciences 169 (2019): 298–307. https://doi.org/10.1016/j.jseaes.2018.10.011.
55.Szojka, Alexander, Karamveer Lalh, Stephen H.j. Andrews, Nadr M. Jomha, Martin Osswald, and Adetola B. Adesida. “Biomimetic 3D Printed Scaffolds for Meniscus Tissue Engineering.” Bioprinting 8 (2017): 1–7. https://doi.org/10.1016/j.bprint.2017.08.001.
56.Lin, Yifei, Sike Lai, Jin Huang, and Liang Du. “The Efficacy and Safety of Knotless Barbed Sutures in the Surgical Field: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.” Scientific Reports 6, no. 1 (2016). https://doi.org/10.1038/srep23425.
57.Liber-Kneć, Aneta, and Sylwia Łagan. “The Stress Relaxation Process in Sutures Tied with a Surgeon’s Knot in a Simulated Biological Environment.” Polymers in Medicine 46, no. 2 (2017): 111–16. https://doi.org/10.17219/pim/68735.
58.Başçı, Onur, Umut Akgun, and F. Alan Barber. “Biological Properties of Suture Materials.” Knots in Orthopedic Surgery, 2017, 11–20. https://doi.org/10.1007/978-3-662-56108-9_2.

電子全文 電子全文(網際網路公開日期:20250821)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔