跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/19 17:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭翔聲
研究生(外文):HSIAO, SHIANG-SHENG
論文名稱:厭氧滲透膜生物反應系統處理低濃度四甲基氫氧化銨之研究
論文名稱(外文):Application of an Anaerobic Osmotic Membrane Bioreactor System for Low-Strength Tetramethylammonium hydroxide Wastewater Treatment
指導教授:陳孝行陳孝行引用關係
指導教授(外文):CHEN, SHIAO-SHING
口試委員:李奇旺徐宏德陳孝行
口試委員(外文):LI, CHI-WANGHSU, HUNG-TECHEN, SHIAO-SHING
口試日期:2020-07-01
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:環境工程與管理研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:86
中文關鍵詞:硫酸鎂厭氧正滲透膜反應系統四甲基氫氧化銨微過濾磷回收薄膜蒸餾
外文關鍵詞:Magnesium sulfateAnaerobic osmotic membrane bioreactorTetra methyl ammonium hydroxideMicrofiltrationPhosphorus recoveryMembrane distillation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:307
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
於本研究利用厭氧滲透膜生物反應系統 (AnOMBR),探討處理低濃度 (100 - 200 mg/L) 之 TMAH 可行性,使用自配的合成廢水作為進料液,使用 MgSO4作為驅動液。探討隨著時間變化 TMAH 之處理效率以及營養鹽的截留效率,由於硫酸鎂的反滲透於生物槽當中造成鹽度的累積,本研究於每一個週期 (10 - 13 天) 搭配 MF (Microfiltration, MF) 系統以降低生物槽之鹽度,使得生物槽保持較低鹽度的狀態,由於生物槽含有豐富的氮、磷以及鎂,藉由MF之濾液進行 pH 的調整進行磷回收, 然而隨著時間的操作,驅動液逐漸地被稀釋,將稀釋的驅動液結合 DCMD 系統進行回收,將驅動液回收再利用。
於本研究初步結果顯示,使用 AnOMBR 搭配每隔一個週期搭配 MF 系統,於操作時間 60 天,TMAH 藉由生物槽體去除率 73.6%,結合 FO 薄膜AnOMBR 系統出流水不受到反應槽之影響,整體去除率約 90%;營養鹽濃度變化方面,磷酸根為隨著時間產濃縮的現象,每隔一個週期搭配 MF 系統,因而使得磷酸跟保持在較低的濃度 (平均濃度 : 反應槽平均 PO43- 濃度為 65.9 mg/L),出流水 PO43- 平均濃度 2.74 mg/L,銨的方面,由於銨為藉由TMAH厭氧生物降解之最終產物,鳥糞石的沉澱以及有機氮於厭氧生物的轉換銨槽累於生物槽當中;於操作階段搭配 MF 系統及進行薄膜之清洗,使得生物槽保持在較低之鹽度狀態並保持較高之水通量;隨著操作時間的變化,甲烷菌的含量隨著時間增長因而增加甲烷氣之含量。
以 MF 抽取濾液進行磷回收 (pH = 9-12),於第 30、43 以及 53 天,磷於 pH = 12,平均回收率可以達到 97.95 %,將 pH = 9 固體物進行 XRD 之分析成分與鳥糞石標準品相近;將稀釋的驅動液結合 DCMD 系統進行驅動液之回收再利用,研究結果顯示,於 35℃ 之溫差下,使用 PTFE 0.45 μm 之薄膜,於實驗第 4 小時恢復至 1 M 硫酸鎂之濃度,具有良好濃縮效果。

In this study, an anaerobic osmosis membrane bioreactor system (AnOMBR) is used to explore the feasibility of treating TMAH with low concentration (100-200 mg / L), in which the bioreactor is fed with synthetic wastewater and MgSO4 was used as a draw solution for the FO module.
As the reverse salt flux of magnesium sulfate causes the accumulation of salinity in the biological system, this study uses a microfiltration (MF) module to reduce the salinity of the biological tank and keeps the biological at a lower salinity in each cycle (10-13 days). By doing so the treatment efficiency of TMAH and the retention efficiency of nutrients over time can be evaluated.
The results indicates that TMAH can be removed by bioreactor (rejection around 70%), 90% of TMAH is rejected by the AnOMBR system. In terms of nutrient concentration changes, phosphate will gradually concentrate. For every 10-13 days, phosphate recovery by MF system, thus this can keep phosphoric acid at a low concentration (the average concentartion of PO43- in the bioreactor was 65.9 mg / L), After AnOMBR treatment the average concentration of PO43- in the outflow water was 2.74 mg/L. On the other hands, ammonium and anaerobic biodegradation produced by TMAH can be found in the AnOMBR system. Due to the operation stage of the MF system and membrane cleaning, the biological system is kept at a low salinity state and maintains a high water flux. With the change of operating time, the content of methane bacteria increases, which thus increases the content of methane. Furthermore, phosphorus recovery and salinity build-up mitigation are achieved using periodic microfiltration to recover 20–73 mg/L phosphorus from pH 9 to 12. Finally, the membrane distillation process was utilized in order to recover the draw solution (MgSO4). Mg2+ concentration is achieved 1 M after 5 hours of operation.

摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 IX
表目錄 XI
第一章前言 1
1.1研究緣起 1
1.2研究目的 3
1.3研究內容 3
第二章 文獻回顧 6
2.1 TFT-LCD製程 6
2.2 氫氧化四甲基銨基本特性 8
2.3 氫氧化四甲基銨廢液處理方式 9
2.3.1 化學氧化法 9
2.3.2 吸附法 10
2.3.3薄膜處理法 11
2.3.4 生物處理法 12
2.4 氫氧化四甲基銨於生物處理降解機制 14
2.4.1 好氧生物處理 TMAH 反應機制 14
2.4.2 厭氧生物處理有機物反應機制 15
2.5 厭氧污泥生長條件 18
2.6 正滲透 (Forward Osmosis) 簡介 21
2.6.1 正滲透基本原理與特性 21
2.6.2 正滲透薄膜之應用 22
2.6.3 正滲透之濃度極化現象 24
2.7 厭氧滲透膜生物反應器 (AnMBR) 類型 26
2.8 厭氧滲透膜生物系統介紹 27
2.9 滲透膜生物反應器研究成果 27
第三章 實驗設備與方法 30
3.1 實驗內容 30
3.1.1 實驗步驟 32
3.2 實驗器材與藥品 37
3.2.1 實驗藥品 37
3.2.2 實驗設備 38
3.3 實驗分析與方法 40
3.3.1 總有機碳分析方法 40
3.3.2 磷酸鹽分析方法 41
3.3.3 氨氮分析方法 41
3.3.4 硫酸鹽分析方法 42
3.3.5 鎂離子分析方法 42
3.3.6 甲烷氣分析方法 43
3.3.7 DNA萃取法 44
3.3.8 厭氧污泥次世代定序 46
3.3.9 X-射線繞射分析原理 47
3.3.10 光學接觸角測量儀 48
第四章 結果與討論 49
4.1 厭氧滲透膜生物反應系統處理 TMAH 廢水效率探討 49
4.1.1 TMAH 去除效率 49
4.1.2 銨離子與磷酸根濃度變化效率 51
4.1.3 甲烷產氣量 54
4.1.4 水通量鹽度累積的變化 56
4.1.5 厭氧正滲透薄膜阻塞 57
4.1.6 微生物群落分析 59
4.2 微過濾膜濾液進行磷回收 63
4.2.1 pH 值對磷回收效率的影響 63
4.2.2 磷回收固體物分析 70
4.3 厭氧滲透膜系統對於稀釋驅動液薄膜蒸餾回收可行性 71
第五章 結論與建議 74
5.1 結論 74
5.2 建議 75
參考文獻 76
附錄 85


[1]Hirano, K., Okamura, J., Taira, T., Sano, K., Toyoda, A. and Ikeda, M. An efficient treatment technique for TMAH wastewater by catalytic oxidation. IEEE Transactions on Semiconductor Manufacturing , 2001. vol. 14.
[2]Lei, C.-N., Whang, L.-M. and Chen, P.-C. Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater using aerobic and anoxic/oxic sequencing batch reactors. Chemosphere, 2010. 81: p. 57–64.
[3]Chang, K. F., Yang, S. Y., You, H. S. and Pan, J. R. Anaerobic treatment of tetra-methyl ammonium hydroxide (TMAH) containing wastewater. IEEE Transactions on Semiconductor Manufacturing, 2008. 21: p. 486–491.
[4]Wang, Y., Zhang, Z., Jiang, C. and Xu, T. Electrodialysis process for the recycling and concentrating of tetramethylammonium hydroxide (TMAH) from photoresist developer wastewater. Industrial and Engineering Chemistry Research, 2013. 52: p. 18356–18361.
[5]Chang, S., Lin, K.-Y. A. and Lu, C. Efficient adsorptive removal of Tetramethylammonium hydroxide (TMAH) from water using graphene oxide. Separation and Purification Technology, 2014. 133: p. 99–107.
[6]Wang, C. W. and Liang, C. Oxidative degradation of TMAH solution with UV persulfate activation. Chemical Engineering Journal, 2014. 254: p. 472–478.
[7]Hsieh, K. L. andLu, Y. S. Model construction and parameter effect for TFT-LCD process based on yield analysis by using ANNs and stepwise regression. Expert Systems with Applications, 2008. 34: p. 717–724.
[8]Chen, T. K., Ni, C. H. and Chen, J. N. Nitrification-denitrification of opto-electronic industrial wastewater by anoxic/aerobic process. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2003. 38: p. 2157–2167.
[9]Lin, C. C., Yang, C. C., Ger, J., Deng, J. F. and Hung, D. Z. Tetramethylammonium hydroxide poisoning. Clinical Toxicology, 2010. 48: p. 213–217.
[10]Kim, S. Scale-up of osmotic membrane bioreactors by modeling salt accumulation and draw solution dilution using hollow-fiber membrane characteristics and operation conditions. Bioresource Technology, 2014. 165: p. 88–95.
[11]Morão, A. I. C., Alves, A. M. B. and Afonso, M. D. Concentration of clavulanic acid broths: Influence of the membrane surface charge density on NF operation. Journal of Membrane Science, 2006. 281: p. 417–428.
[12]Valladares Linares, R., Yangali-Quintanilla, V., Ghaffour, N., Amy, G., Leiknes, T. and Vrouwenvelder, J S. Life cycle cost of a hybrid forward osmosis – low pressure reverse osmosis system for seawater desalination and wastewater recovery. Water Research, 2016. 88: p. 225–234.
[13]Qazi, S. Chapter 5 - Fixed Standalone PV Systems for Disaster Relief and Remote Areas. in Standalone Photovoltaic (PV) Systems for Disaster Relief and Remote Areas, 2017. p. 139–175.
[14]Chen, S. Y., Lu, L. A. andLin, J. G. Biodegradation of tetramethylammonium hydroxide (TMAH) in completely autotrophic nitrogen removal over nitrite (CANON) process. Bioresource Technology, 2016. 210: p. 88–93.
[15]Hu, T. H., Whang, L. M., Liu, P. W. G., Hung, Y. C., Chen, H. W. and Lin, L. B.. Biological treatment of TMAH (tetra-methyl ammonium hydroxide) in a full-scale TFT-LCD wastewater treatment plant. Bioresource Technology, 2012. 113: p. 303–310.
[16]Noor, I.-, Coenen, J., Martin, A., Dahl, O. and Åslin, M. Experimental investigation and techno-economic analysis of tetramethylammonium hydroxide removal from wastewater in nano-electronics manufacturing via membrane distillation. Journal of Membrane Science, 2019. 579: p. 283–293.
[17]Urakami, T., Araki, H. and Kobayashi, H. Isolation and identification of tetramethylammonium-biodegrading bacteria. Journal of Fermentation and Bioengineering, 1990. 70: p. 41–44.
[18]Dalton, H. The biochemistry of methylotrophs. Trends in Biochemical Sciences (1983). vol. 8.
[19]Maaz, M., Yasin, M., Aslam, M., Kumar, G., Atabani, A. E., Idrees, M., Anjum, F., Jamil, F., Ahmad, R., Khan, Asim L., Lesage, G., Heran, M. and Kim, J. Anaerobic membrane bioreactors for wastewater treatment: Novel configurations, fouling control and energy considerations. Bioresource Technology, 2019. 283: p. 358–372.
[20]Ketheesan, B. and Stuckey, D. C. Effects of hydraulic/organic shock/transient loads in anaerobic wastewater treatment: A review. Critical Reviews in Environmental Science and Technology, 2015. 45: p. 2693–2727.
[21]Asakawa, S., Sauer, K., Liesack, W. and Thauer, R. K. Tetramethylammonium:coenzyme M methyltransferase system from Methanococcoides sp. Archives of Microbiology, 1998. 170: p. 220–226.
[22]Turovskiy, I. S. and Mathai, P. K. Wastewater Sludge Processing. Wastewater Sludge Processing, 2005. p. 1–354.
[23]Fezzani, B. and Cheikh, R.Ben Two-phase anaerobic co-digestion of olive mill wastes in semi-continuous digesters at mesophilic temperature. Bioresource Technology, 2010.
[24]Chen, T. H. and Hashimoto, A. G. Effects of pH and substrate:inoculum ratio on batch methane fermentation. Bioresource Technology, 1996. 56: p. 179–186.
[25]Korsak, L. Anaerobic treatment of wastewater in a UASB reactor. 2008. p. 1–70.
[26]Choong, Y. Y., Norli, I., Abdullah, A. Z. andYhaya, M. F. Impacts of trace element supplementation on the performance of anaerobic digestion process: A critical review. Bioresource Technology, 2016. 209: p. 369–379.
[27]Phuntsho, S., Sahebi, S., Majeed, T., Lotfi, F., Kim, Jung E. and Shon, H. K. Assessing the major factors affecting the performances of forward osmosis and its implications on the desalination process. Chemical Engineering Journal, 2013. 231: p. 484–496.
[28]Chung, T.-S., Li, X., Ong, R. C., Ge, Q., Wang, H. and Han, G. Emerging forward osmosis (FO) technologies and challenges ahead for clean water and clean energy applications. Current Opinion in Chemical Engineering, 2012. 1: p. 246–257.
[29]Cath, T. Y., Childress, A. E. andElimelech, M. Forward osmosis: Principles, applications, and recent developments. Journal of Membrane Science, 2006. 281: p. 70–87.
[30]Yangali-Quintanilla, V., Li, Z., Valladares, R., Li, Q. and Amy, G. Indirect desalination of Red Sea water with forward osmosis and low pressure reverse osmosis for water reuse. Desalination, 2011. 280: p. 160–166.
[31]Shaffer, D. L., Yip, N. Y., Gilron, J. and Elimelech, M. Seawater desalination for agriculture by integrated forward and reverse osmosis: Improved product water quality for potentially less energy. Journal of membrane science, 2012. 415: p. 1–8.
[32]Yuan, H., Abu-Reesh, I. M. and He, Z. Enhancing desalination and wastewater treatment by coupling microbial desalination cells with forward osmosis. Chemical Engineering Journal, 2015. 270: p. 437–443.
[33]Beaudry, E. G. and Lampi, K. A. Membrane technology for direct-osmosis concentration of fruit juices. Food Technology, 1990. 44: p. 5–12.
[34]Garcia-Castello, E. M., McCutcheon, J. R. and Elimelech, M. Performance evaluation of sucrose concentration using forward osmosis. Journal of Membrane Science, 2009. 338: p. 61–66.
[35]Han, G., Liang, C.-Z., Chung, T.-S., Weber, M. and Maletzko, C. Combination of forward osmosis (FO) process with coagulation/flocculation (CF) for potential treatment of textile wastewater. Water Research, 2016. 91: p. 361–370.
[36]Jacob, M., Garnier, O. F. and Lebas, G. Economics of power production from forward osmosis. Society of Petroleum Engineers - International Petroleum Technology Conference 2014, IPTC 2014: Unlocking Energy Through Innovation, Technology and Capability, 2014. 1: p. 773–783.
[37]Saiful, Riana, U., Marlina, Ramli, M. and Mahmud, N. Drinking Water Bags Based on Chitosan Forward Osmosis Membranes for Emergency Drinking Water Supply. IOP Conference Series: Earth and Environmental Science, 2019. 273: p. 1–9.
[38]Zhang, H., Zhang, X., Yu, M., Wang, Y. and Yang, F. Performance of anaerobic forward osmosis membrane bioreactor (AnOMBR) for dissolved gases transfer and energy recovery. Journal of Cleaner Production, 2019. 235: p. 943–952.
[39]McCutcheon, J. R., McGinnis, R. L. and Elimelech, M. Desalination by ammonia–carbon dioxide forward osmosis: Influence of draw and feed solution concentrations on process performance. Journal of Membrane Science, 2006. 278: p. 114–123.
[40]Zhang, X., Yue, X., Liu, Z., Li, Q. and Hua, X. Impacts of sludge retention time on sludge characteristics and membrane fouling in a submerged anaerobic–oxic membrane bioreactor. Applied microbiology and biotechnology, 2015. 99: p. 4893–4903.
[41]Martin, I., Pidou, M., Soares, A., Judd, S. and Jefferson, B. Modelling the energy demands of aerobic and anaerobic membrane bioreactors for wastewater treatment. Environmental Technology, 2011. 32: p. 921–932.
[42]Meng, F., Li, X., Ong, R. C., Ge, Q., Wang, H. and Han, G. Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material. Water Research, 2009. 43: p. 1489–1512.
[43]Yang, W., Cicek, N. and Ilg, J. State-of-the-art of membrane bioreactors: Worldwide research and commercial applications in North America. Journal of Membrane Science, 2006. 270: p. 201–211.
[44]Le-Clech, P., Chen, V. and Fane, T. A. G. Fouling in membrane bioreactors used in wastewater treatment. Journal of Membrane Science, 2006. 284: p. 17–53.
[45]Wang, Z., Wu, Z., Mai, S., Yang, C., Wang, X., An, Y. and Zhou, Z. Research and applications of membrane bioreactors in China: Progress and prospect. Separation and Purification Technology, 2008. p. 249–263.
[46]Huang, Q., Yand, Y., Pang, X. and Wang, Q. Evolution on qualities of leachate and landfill gas in the semi-aerobic landfill. Journal of Environmental Sciences, 2008. 20: p. 499–504.
[47]Gu, Y., Wu, Z., Mai, S., Yang, C., Wang, X., An, Y. and Zhou, Z . Development of Anaerobic Osmotic Membrane Bioreactor for Low-Strength Wastewater Treatment at Mesophilic Condition. Journal of Membrane Science, 2015. 490: p. 197–208.
[48]Chang, H. M., Chen, S. S., Lu, M. Y., Cong Duong, C., Cong Nguyen, N., Chang, W. S. and Sinha Ray, S . Mesophilic microfiltration–anaerobic osmotic membrane bioreactor–membrane distillation hybrid system for phosphorus recovery. Journal of Chemical Technology and Biotechnology, 2019. 94: p. 1230–1239.
[49]Wang, X., Wang, C., Tang, C. Y., Hu, T. and Ren, Y. Development of a novel anaerobic membrane bioreactor simultaneously integrating microfiltration and forward osmosis membranes for low-strength wastewater treatment. Journal of Membrane Science, 2017. 527: p. 1–7.
[50]Huang, L. ying, Lee, D. J. and Lai, J. Y. Forward osmosis membrane bioreactor for wastewater treatment with phosphorus recovery. Bioresource Technology, 2015. 198: p. 418–423.
[51]Wang, X., Wang, C., Tang, C.Y., Hu, T. and Ren, Yueping. Development of a novel anaerobic membrane bioreactor simultaneously integrating microfiltration and forward osmosis membranes for low-strength wastewater treatment. Journal of Membrane Science, 2017. 527: p. 1–7.
[52]Bragg, W. H. and Bragg, W. L. The reflection of X-rays by crystals. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1913. 88: p. 428–438.
[53]Tanaka, K. Anaerobic degradation of tetramethylammonium by a newly isolated marine methanogen. Journal of Fermentation and Bioengineering, 1994. 78: p. 386–388.
[54]Holloway, R. W., Childress, A. E., Dennett, K. E. and Cath, T. Y. Forward osmosis for concentration of anaerobic digester centrate. Water Research, 2007. 41: p. 4005–4014.
[55]Nguyen, N. C., Chen, S. S., Nguyen, H. T. and Chen, Y. H . Applicability of an integrated moving sponge biocarrier-osmotic membrane bioreactor MD system for saline wastewater treatment using highly salt-tolerant microorganisms. Separation and Purification Technology, 2018. 198: p. 93–99.
[56]Liu, B., Yoshinaga, K., Wu, J. H., Chen, W. Y., Terashima, M. and Yasui, H. Kinetic analysis of biological degradation for tetramethylammonium hydroxide (TMAH) in the anaerobic activated sludge system at ambient temperature. Biochemical Engineering Journal, 2016. 114: p. 42–49.
[57]Tsigkou, K., Tsafrakidou, P., Kopsahelis, A., Zagklis, D., Zafiri, C. and Kornaros, M. Used disposable nappies and expired food products valorisation through one- & two-stage anaerobic co-digestion. Renewable Energy, 2020. 147: p. 610–619.
[58]Song, X., Xie, M., Li, Y., Li, G. and Luo, W. Salinity build-up in osmotic membrane bioreactors: Causes, impacts, and potential cures. Bioresource Technology, 2018. 257: p. 301–310.
[59]Chen, L., Gu, Y., Cao, C., Zhang, J., Ng, J. W. and Tang, C.. Performance of a submerged anaerobic membrane bioreactor with forward osmosis membrane for low-strength wastewater treatment. Water Research, 2014. 50: p. 114–123.
[60]Wang, X., Chang, V. W. C. and Tang, C. Y. Osmotic membrane bioreactor (OMBR) technology for wastewater treatment and reclamation: Advances, challenges, and prospects for the future. Journal of Membrane Science, 2016. 504: p. 113–132.
[61]Nguyen, N. C., Nguyen, H. T., Chen, S. S., Ngo, H. H., Guo, W. and Chan, W. H. A novel osmosis membrane bioreactor-membrane distillation hybrid system for wastewater treatment and reuse. Bioresource Technology, 2016. 209: p. 8–15.
[62]Tsuneda, S., Aikawa, H., Hayashi, H., Yuasa, A. and Hirata, A. Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microbiology Letters, 2003. 223: p. 287–292.
[63]He, H., Zhang, N., Chen, N., Lei, Z., Shimizu, K. and Zhang, Z . Efficient phosphate removal from wastewater by MgAl-LDHs modified hydrochar derived from tobacco stalk. Bioresource Technology Reports, 2019. 8: p. 1–8.
[64]Warsinger, D. M., Swaminathan, J., Guillen-Burrieza, E., Arafat, H. A. and Lienhard V, J. H. Scaling and fouling in membrane distillation for desalination applications: A review. Desalination, 2015. 356: p. 294–313.
[65]Shiba, N. C. and Ntuli, F. Extraction and precipitation of phosphorus from sewage sludge. Waste Management, 2017. 60: p. 191–200.
[66]Castelle, C. J., Brown, C. T., Thomas, B. C., Williams, K. H. and Banfield, J. F. Unusual respiratory capacity and nitrogen metabolism in a Parcubacterium (OD1) of the Candidate Phyla Radiation. Scientific Reports, 2017. 7: p. 1–12.
[67]Qiu, G. and Ting, Y. P. Direct phosphorus recovery from municipal wastewater via osmotic membrane bioreactor (OMBR) for wastewater treatment. Bioresource Technology, 2014. 170: p. 221–229.
[68]Luo, W., Hai, F. I. and Price, W. E. Phosphorus and water recovery by a novel osmotic membrane bioreactor-reverse osmosis system. Bioresource Technology, 2016. 200: p. 297–304.
[69]Tansel, B., Lunn, G. and Monje, O. Struvite formation and decomposition characteristics for ammonia and phosphorus recovery: A review of magnesium-ammonia-phosphate interactions. Chemosphere, 2018. 194: p. 504–514.
[70]Kim, Y., Li, S. and Chekli, L. Influence of fertilizer draw solution properties on the process performance and microbial community structure in a side-stream anaerobic fertilizer-drawn forward osmosis – ultrafiltration bioreactor. Bioresource Technology, 2017. 240: p. 149–156.
[71]Shu, L., Schneider, P., Jegatheesan, V. and Johnson, J. An economic evaluation of phosphorus recovery as struvite from digester supernatant. Bioresource Technology, 2006. 97: p. 2211–2216.
[72]Ramezanianpour, M. and Sivakumar, M. An analytical flux decline model for membrane distillation. Desalination, 2014. 345: p. 1–12.
[73]Lin, P. H., Horng, R. Y., Hsu, S. F., Chen, S. S. and Ho, C. H. A feasibility study of ammonia recovery from coking wastewater by coupled operation of a membrane contactor and membrane distillation. International Journal of Environmental Research and Public Health, 2018. 15: p. 2–12.
[74]Eykens, L., DeSitter, K. and Dotremont, C. Wetting resistance of commercial membrane distillation membranes in waste streams containing surfactants and oil. Applied Sciences, 2017. 7: p. 2–12.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top