(44.192.112.123) 您好!臺灣時間:2021/03/09 00:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃向豪
研究生(外文):HUANG, HSIANG-HAO
論文名稱:摻雜染料的高分子薄膜隨機雷射
論文名稱(外文):Random lasing in a dye-doped thin film polymer
指導教授:鄭鈺潔鄭鈺潔引用關係
指導教授(外文):CHENG, YU-CHIEH
口試委員:林家弘邱雅萍楊承山鄭鈺潔
口試委員(外文):LIN, JA-HONCHIU, YA-PINGYANG, CHAN-SHANCHENG, YU-CHIEH
口試日期:2020-05-21
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:81
中文關鍵詞:液晶高分子網絡膜隨機雷射光驅動控制
外文關鍵詞:Liquid Crystal Networks filmsRandom laserLight induced
相關次數:
  • 被引用被引用:0
  • 點閱點閱:33
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文以液晶高分子網絡膜(Liquid Crystal Networks film, LCNs film)具有高散射體之特性,成功地激發隨機雷射。本論文更透過此薄膜的熱響應及光響應特性來調控隨機雷射的輸出頻譜。利用具有 PM-597 與 ABS-400 雙染料摻雜之薄膜,分別作為激發隨機雷射訊號和光調控輸出波長。雷射輸出頻譜的中心波長與薄膜的分子散射平均路徑有關,而平均路徑會依液晶排列不同而異,例如高散射的展開配向(splay alignment)與單軸配向的中心波長於室溫下最高可達 8.6 nm 差距。最後也展示可在非物理式接觸下,此液晶高分子薄膜的光刺激響應,利用波長 405 nm 之可見光 LED 光源,在能量為 600 mW/cm2 調控下,以3微米厚間隙球製成的平行配向薄膜可達到波長 11.9 nm 的紅移。

Random lasing using liquid crystal networks (LCNs) films feature unique properties such as its high and tunable scattering intensity which varies with thermal and optical responses. We use two dyes doped in our LCNs films, such as PM-597 and ABS-400, regarded as the lasing medium and as a photothermal agent, respectively. The random laser is excited for a pump wavelength of 532 nm where photons form a closed path in LCN, acting as high scatters. The random lasing emission spectrum is related to the strength of scattering, varying with the molecular arrangements of LCNs film. For instance, the difference of the center lasing wavelength of LCNs between a splay and a uniaxial alignment is 8.6 nm at room temperature. Furthermore, we propose a contactless control ability for the LCNs film which is made by 3 µm thickness spacer (horizontal alignment), it can reach 11.9 nm spectrum shift via a visible LED light source with 405 nm wavelength and 600 mW/cm2 power density.
摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 隨機雷射簡介 1
1.2 隨機雷射文獻回顧 3
1.2.1溫控隨機雷射 4
1.2.2電控與磁控隨機雷射 5
1.2.3機械式調控之隨機雷射 7
1.2.4光調控之隨機雷射 9
1.3 研究動機 10
第二章 液晶高分子薄膜特性與介紹 11
2.1 液晶分類 11
2.1.1 由鏈結方式分類 11
2.1.2 由排列結構分類 13
2.2 液晶高分子網絡膜 14
2.3 液晶高分子網絡膜熱膨脹及形變 15
2.4 液晶配向影響及偏光檢測 16
第三章 薄膜設計與量測分析架構 19
3.1液晶高分子網絡膜材料與製備流程 19
3.1.1 實驗材料介紹 19
3.1.2 混合液調配 22
3.1.3 液晶盒製作 23
3.1.4 染料對於不同調控機制設定 25
3.1.5 薄膜分層配向設計 27
3.1.6 薄膜製作參數設定 28
3.1.7 光譜量測儀器及架構 28
3.1.8 光譜量測流程 30
3.2 不同配向之液晶高分子網絡膜於顯微鏡下的觀察 33
3.2.1 觀察儀器-偏光顯微鏡 33
3.2.2 平行配向、無配向、展開配向、垂直配向觀察 34
3.6 結論 37
第四章 隨機雷射光與熱控光譜 38
4.1 單一染料摻雜熱致變調控液晶高分子網絡膜 38
4.1.1 室溫下單一染料液晶高分子網絡膜雷射閥值比較 38
4.1.2 溫控-單一染料液晶高分子網絡膜隨機雷射特性 40
4.2 雙染料摻雜光驅動調控液晶高分子網絡膜 43
4.2.1 室溫下雙染料液晶高分子網絡膜雷射閥值比較 43
4.2.2 光控-雙染料液晶高分子網絡膜隨機雷射特性 45
4.3 隨機雷射表現與光譜儀積分時間關係 49
4.4 隨機雷射發光波長之異向性探討 50
4.5 結論 51
第五章 結論與未來展望 53
參考文獻 55
附錄 60
附錄 1 單一染料液晶高分子網絡膜發光特性 60
附錄 2 雙染料液晶高分子網絡膜發光特性 69
附錄 3 不同積分下隨機雷射光譜表現 78
[1]A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev., vol. 112, 1958, pp. 1940-1949.
[2]T. H. Maiman, “Stimulated optical radiation in ruby,” Nature, vol. 187, 1960, pp. 493-494.
[3]Y. J. Liu, X. W. Sun, H. I. Elim and W. Ji, “ Gain narrowing and random lasing from dyedoped polymer-dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett., vol. 89, no. 1, 2006, p. 011111.
[4]L. H. Ye, J. C. Lu, C. G. Lv, Y. Y. Feng, C. Zhao, Z. Y. Wang and Y. P. Cui, “Random lasing action in magnetic nanoparticles doped dye solutions,” Opt. Commun., vol. 340, 2015, pp. 151-154.
[5]C. H. Hsu, C. Y. Wu and W. F. Hsieh, “Stimulated emission and lasing of random-growth oriented ZnO nanowires,” J. Appl. Phys., vol. 97, no. 6, 2005, p. 064315.
[6]L. H. Ye, C. Zhao, Y. Y. Feng, B. Gu, Y. P. Cui and Y. Q. Lu, “Study on the Polarization of Random Lasers from Dye-Doped Nematic Liquid Crystals,” Nanoscale Res. Lett., vol. 12, no. 1, 2017.
[7]P. J. W. Hands, D. J. Gardiner, S. M. Morris, C. Mowatt, T. D. Wikinson and H. J. Coles, “Band-edge and random lasing in paintable liquid crystal emulsions,” Appl. Phys., vol. 98, no. 14, 2011, p. 141102.
[8]Q. H. Song, S. M. Xiao, X. C. Zhou, L. I. Liu, L. Xu, Y. G. Wu and Z. S. Wang, “Liquid crystals based tunable high-Q directional random laser from a planar random microcavity,” Opt. lett., vol. 32, no. 4, 2007, pp. 372-275.
[9]B. Q. He, Q. Liao and Y. Huang, “Random lasing in a dye doped cholesteric liquid crystal polymer solution, “ Adv. Opt. Mater., vol. 31, no. 2, 2008, pp. 375-379.
[10]C. W. Chen, H. C. Jau, C. T. Wang, C. H. Lee, L. C. Khoo and T. H. Lin, “Random lasing in blue phase liquid crystals,” Opt. Mater. Express, vol. 20, no. 21, 2012, p. 23978.
[11]C. S. Wang, T. Y. Chang, T. Y. Lin and Y. F. Chen, “Biologically inspired flexible quasi-single-mode random laser: An integration of Pieris canidia butterfly wing and semiconductors,” Sci. Rep., vol. 4, 2014, pp. 1-6.
[12]T. M. Sun, C. S. Wang, C. S. Liao, S.Y. Lin, P. Perumal, C. W. Chiang and Y. F. Chen, “Stretchable Random Lasers with Tunable Coherent Loops, “ACS Nano, vol. 9, no. 12, 2015, pp. 12436-12441.
[13]D. S. Wiersma and S Cavalieri, “A temperature-tunable random laser,” Nature, vol. 414, 2001, pp. 708–709.
[14]Y. Sawa, K. Urayama, T. Takigawa, A. Desimone and L. Teresi, “Thermally driven giant bending of liquid crystal elastomer films with hybrid alignment,” Macromolecules, vol. 43, no. 9, 2010, pp. 4362-4369.
[15]L. H. Ye, Z. Yin, C. Zhao, C. Hou, Y. Wang, Y. P. Cui and Y. Q. Lu, “Thermally tunable random laser in dye-doped liquid crystals,” J. Mod. Opt., vol. 60, no. 19, 2013, pp. 1607-1611.
[16]Q. Song, L. Liu, L. Xu, Y. Wu and Z. Wang, “Electrical tunable random laser emission from a liquid-crystal infiltrated disordered planar microcavity,” Optics Letters, vol. 34, no. 3, 2009, p. 298.
[17]J. H, Lin, J. W. Huang, J.J. Wu, S. Y. Tsay and Y. H. Chen, “Electrically controllable random lasing from dye-doped nematic liquid crystal within a capillary fiber,” Opt. Mater. Express, vol. 8, no. 9, 2018, p. 2910.
[18]S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Electronic control of nonresonant random lasing from a dye-doped smectic A* liquid crystal scattering device,” Appl. Phys. Lett., vol. 86, no. 14, 2005, pp.1-3.
[19]T. Naruta, T. Akita, Y. Uchida, D. Lisjak, A. Mertelj and N. Nishiyama, “Magnetically controllable random laser in ferromagnetic nematic liquid crystals,” Optics Express, vol. 27, 2019, pp. 24426-24433.
[20]L. H. Ye, B. Liu, C. Chao, Y. Wang, Y. Cui and Y. Lu, “The electrically and magnetically controllable random laser from dye-doped liquid crystals,” J. Appl. Phys., vol. 116, 2014, pp. 1-5.
[21]P.V. Shibaev, P. Rivera, D. Teter, S. Marsico, M. Sanzari, V. Ramakrishnan and E. Hanelt, “Color changing and lasing stretchable cholesteric films,” Optics Express, vol. 16, no. 5, 2008, pp. 2965-2970.
[22]C. S. Wang, T. Y. Chang, T. Y. Lin and Y. F. Chen, “Biologically inspired flexible quasi-single-mode random laser An integration of Pieris canidia butterfly wing and semiconductors,” Scientific Reports, vol. 4, 2014, pp. 1-6.
[23]M. S. Tzu, C. S. Wang, C. S. Liao, S. Y. Lin, P. Perumal, C. W. Chiang and .Y. F. Chen, “Stretchable Random Lasers with Tunable Coherent Loops,” ACS Nano, vol 9, no. 12, 2015, pp. 12436-12441.
[24]H. Zeng, W. M. Wani, P. Wasylcyk and A. Priimagi, “Light-Driven, Caterpillar-Inspired Miniature Inching Robot,” Macromol Rapid Commun, vol. 39, no. 1, 2018, pp. 1-6.
[25]S. Perumbilavil, A. Piccardi, O. Buchnev, M. Kauranen, G. Strangi, G. Assanto, “All-optical guided-wave random laser in nematic liquid crystals,” Optics Express, vol. 25, no. 5, 2017, pp. 4672.
[26]C. R. Lee, J.D. Lin, B.Y. Huang, T. S. Mo and S.Y. Huang, “All-optically controllable random laser based on a dye-doped liquid crystal added with a photoisomerizable dye,” Optics Express, vol. 1, no. 25, 2010, pp. 65-66.
[27]A. K. Tiwari, L. Pattelli, R. Torre and D. S. Wiersma, “Remote control of liquid crystal elastomer random laser using external stimuli,” Appl. Phys. Lett., vol. 113, 2018, 013701.
[28]M. Rogoz, H. Zeng, C. Xuan, D. S. Wiersma and P. Wasylczyk, “Light-Driven Soft Robot Mimics Caterpillar Locomotion in Natural Scale,” Adv. Opt. Mater., vol. 4, no. 11, 2016, pp. 1689-1694.
[29]Z. Hao, O. M. Wani, P. Wasylczyk and A. Priimagi, “Light‐Driven, Caterpillar‐Inspired Miniature Inching Robot,” Macromol Rapid Commun, vol. 39, no. 1, 2018, pp. 1-6.
[30]C.H. Zhang, F. L. Yang, W. J. Wang and B. Chen, “Preparation and characterization of hydrophilic modification of polypropylene non-woven fabric by dip-coating PVA (polyvinyl alcohol), “Sep. Purif. Technol., vol. 61, no. 3, 2008, pp. 276-286.
[31]李軒,光驅動液晶彈性體滾輪微型機器人,碩士論文,國立臺北科技大學光電工程系,臺北,2018。
[32]D. S. Wiersma, M. Colocci, R. Righini and F. Aliev, “ Temperature-controlled light diffusion in random media,” Phys. Rev. B, vol. 64, no. 14, 2001, pp. 1442081-1442086.
[33]C. R. Lee, S. H. Lin, C. H. Guo, S. H. Chang, T. S. Mo, and S. C. Chu,“All-optically controllable random laser based on a dye-doped polymer-dispersed liquid crystal with nano-sized droplets,” Opt. Express, vol. 18, 2010, pp. 2406-2412.
[34]B. He, Q. Liao, and Y. Huang, “Random lasing in a dye doped cholesteric liquid crystal polymer solution,” Opt. Materials, vol. 31, 2008, pp. 375-379.
[35]G. Strangi, S. Ferjani, V. Barna, A. D. Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express, vol. 14, 2006, pp. 7737-7744.
[36]H. Zhang, G. Feng, J. Yi, J. Mu, K. Yao, and S. Zhou, “Coherent random laser based on liquid waveguide gain channels,” J. Mod. Opt., vol. 62, 2015, pp. 865-868.
[37]H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Pev. Lett., vol. 85, 1999, pp. 2278-2281.
[38]R. K. Thareja and A. Mitra, “Random laser action in ZnO,” Appl. Phys. B, vol. 71, 2000, pp. 181-184.
[39]S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G.-C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett., vol. 84, 2004, pp. 3241-3243.
[40]L. Li and L. Deng, “Low threshold and coherent random lasing from dye-doped cholesteric liquid crystals using oriented cells,” Laser Phys., vol. 23, 2013, pp. 085001.
[41]C. J. S. D. Matos, L. D. S. Menezes, A. M. Brito-Silva, M. A. M. Gámez, A. S. L. Gomes, and C. B. D. Araújo, “Random fiber laser,” Phys. Rev. Lett., vol. 99, 2007, pp. 153903.
[42]A. E. Vasdekis, G. E. Town, G. A. Turnbull, and I. D. W. Samuel, “Fluidic fibre dye lasers,” Opt. Express, vol. 15, 2007, pp. 3962-3967.
[43]Z. Hu, H. Zheng, L. Wang, X. Tian, T. Wang, Q. Zhang, G. Zou, Y. Chen, and Q. Zhang, “Random fiber laser of POSS solution-filled hollow optical fiber by end pumping,” Opt. Commun., vol. 285, 2012, pp. 3967-3970.
[44]Z. J. Hu, B. Miao, T. X. Wang, Q. Fu, D. G. Zhang, H. Ming, and Q. J. Zhang“Disordered microstructure polymer optical fiber for stabilized coherent random fiber laser,” Opt. Lett., vol. 38, 2013, pp. 4644-4647.
[45]J. H. Lin, J .J. Wu, l. h. Jian, S. Y. Tsay and Y. H. Chen, “Electrically controllable random laser with dye-doped liquid crystals inside the capillary fiber,” JSAP-OSA Joint Symposia 2017 Abstracts, vol. 8a_A409_6, 2017.
[46]J. H. Lin, J. W. Huang, J. J. Wu, S. Y. Tsay and Y. H. Chen, “Electrically controllable random lasing from dye-doped nematic liquid crystals within a capillary fiber,” Opt. Mater. Express, vol. 8, no. 9, 2018, pp. 2910-2917.
[47]Z. Shen, L. Wu, S. Zhu, Y. Zheng, and X. Chen, “Random lasing action in a polydimethylsiloxane wrinkle induced disordered structure,” Appl. Phys. Lett., vol. 105, 2014, pp. 021106.
[48]A. Tulek and Z. V. Vardeny, “Studies of random laser action in π-conjugated polymers,” J. Opt., vol. 12, 2010, pp. 024008.
[49]X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer embedded with silver nanoparticles,” Appl. Phys. Lett., vol. 92, 2008, pp. 201112.
[50]D. Zhang, Y. Wang, and D. Ma, “SiO2 nanoparticles as scatterers for random organic laser action in red fluorescent dye 4-(dicyanomethylene)-2-tert-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran doped polystyrene films,” J. Appl. Phys., vol. 103, 2008, pp. 123107.
[51]X. Ma, P. Chen, D. Li, Y. Zhang, and D. Yang, “Electrically pumped ZnO film ultraviolet random lasers on silicon substrate,” Appl. Phys. Lett., vol. 91, 2007, pp. 251109.
[52]B. T. Chiad, M. A. Hameed, F. J. Kadhim, and K. H. Lati, “Determination of threshold random gain medium in dye: Polymer films containing TiO2 nanoparticles,” Natural Science, vol. 04, 2012, pp. 402-408.
[53]Y. Tian, X. Ma, L. Xiang, M. V. Ryzhkov, A. A. Borodkin, S. I. Rumyantsev, and D. Yang, “Optically and electrically pumped random lasing from ZnO films annealed at different temperatures,” Opt. Commun., vol. 285, 2012, pp. 5323-5326.
[54]劉佩雯,聚合物薄膜添加二氧化矽奈米粒子產生隨機雷射之研究,碩士論文,國立中山大學光電工程學系,高雄,2015。
[55]G. Dai, L. Wang, L. Deng, “Flexible random laser from dye doped stretchable polymer film containing nematic liquid crystal,” Opt. Mater. Express, vol. 10, 2020, pp. 68-75.

電子全文 電子全文(網際網路公開日期:20250714)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔