(3.237.97.64) 您好!臺灣時間:2021/03/04 15:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:董育伸
研究生(外文):TUNG, YU-SHEN
論文名稱:兩階段式退火對蒸鍍製備MAPbI3鈣鈦礦太陽能電池的特性影響
論文名稱(外文):Effect of Two-stage Annealing on the Characteristics of MAPbI3 Perovskite Solar Cells Prepared by Evaporation
指導教授:陳隆建陳隆建引用關係
指導教授(外文):CHEN, LUNG-CHIEN
口試委員:林瑞明藍文厚陳隆建
口試委員(外文):LIN, RUEI-MINGLAN, WUN-HOUCHEN, LUNG-CHIEN
口試日期:2020-07-14
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:58
中文關鍵詞:鈣鈦礦太陽能電池兩階段式退火MAPbI3
外文關鍵詞:perovskitesolar celltwo-stage annealingMAPbI3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:41
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用真空熱蒸鍍製程搭配溶液製程來製備鈣鈦礦(Perovskite)太陽能電池,透過兩步驟合成製備MAPbI3鈣鈦礦薄膜,以慢速的方式來成長鈣鈦礦層,以形成較佳結晶,並且透過兩次退火製備出不同的鈣鈦礦薄膜,探討其不同退火溫度對鈣鈦礦薄膜太陽能電池效率之影響,接著利用不同濃度、不同靜置時間對鈣鈦礦薄膜進行優化,用以提升鈣鈦礦太陽能電池的光率轉換效率(PCE),透過逆向掃描該元件的J-V曲線,得知其最高功率轉換效率可達8.66%、開路電壓(Open Circuit Voltage, Voc)為0.965V、電流密度(Short circuit current, Jsc)為13.6 mA/cm2、填充因子(Fill Factor, FF)為0.66。其電池元件結構如下:Glass/FTO/TiO2-compact/TiO2-mesoporous/PCBM/CH3NH3PbI3/Spiro-OMeTAD/Ag。
In this study, a vacuum thermal evaporation process combined with a solution process was used to prepare Perovskite solar cells. The MAPbI3 perovskite film was synthesized by two-step synthesis, and the perovskite layer was grown in a slow manner to form better crystals. And through two annealings, different perovskite films were prepared, and the effects of different annealing temperatures on the efficiency of perovskite thin-film solar cells were discussed. Then, different concentrations and different standing times were used to optimize the perovskite films to improve The light rate conversion efficiency (PCE) of the perovskite solar cell, by scanning the JV curve of the element in reverse, it is known that its maximum power conversion efficiency can reach 8.66%, the open circuit voltage (Voc) is 0.965V, and the current density (Short circuit current, Jsc) is 13.6 mA/cm2, and fill factor (Fill Factor, FF) is 0.66. The battery component structure is as follows: Glass/FTO/TiO2-compact/TiO2-mesoporous/PCBM/CH3NH3PbI3/Spiro-OMeTAD/Ag.
摘要 i
ABSTRACT ii
第一章緒論 1
1.1 前言 1
1.2 研究動機 2
1.3論文架構 2
第二章 理論基礎與文獻回顧 4
2.1 太陽能電池發展和分類 4
2.2 太陽光模擬定義 5
2.3 太陽能電池工作原理 6
2.3.1 電荷及能量轉移機制 7
2.3.2 有機太陽能電池運作機制 7
2.3.3 鈣鈦礦薄膜太陽能電池工作原理 8
2.4 太陽能電池主要參數 9
2.5 有機太陽能電池結構 11
2.5.1電子傳輸層TiO2奈米材料特性 11
2.5.2電子傳輸層 PCBM材料特性 12
2.5.3主動層Perovskite材料特性 13
2.5.4電洞傳輸層Spiro-MeOTAD材料特性 14
第三章 實驗方法 15
3.1 實驗架構 15
3.2 實驗材料 16
3.3 實驗設備 17
3.3.1 手套箱 18
3.3.2電磁盤加熱攪拌器 (Hot Plate Stirrers) 18
3.3.3 旋轉塗佈機 (Spin – Coater) 18
3.3.4 超音波震盪機(Ultrasonic Cleaner) 19
3.3.5 熱蒸鍍機系統 (Thermal Evaporation Systems) 19
3.4 實驗流程 20
3.4.1 FTO基板清洗 20
3.4.2 UV-Ozone Cleaner 20
3.4.3旋塗電子傳輸層TiO2緻密層薄膜 20
3.4.4旋塗電子傳輸層TiO2多孔層薄膜 21
3.4.5旋塗電子傳輸層PCBM薄膜 21
3.4.6 真空熱蒸鍍PbI2薄膜 22
3.4.6 調配MAI溶液 22
3.4.6 主動層Perovskite薄膜製備 22
3.4.7 電動傳輸層Spiro-OMeTAD薄膜製備 23
3.4.8 熱蒸鍍銀電極 23
3.5 量測儀器與量測系統架設 23
3.5.1 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscopy, FE-SEM) 23
3.5.2 X光繞射儀(X-ray Diffraction, XRD) 24
3.5.3 光激螢光光譜 (Photoluminescence, PL) 24
3.5.4 紫外線/可見光分光光譜儀(UV/VIS/NIR Spectrometers) 25
3.5.5 光率轉換效率量測 26
第四章 實驗結果與討論 27
4.1. MAPBI3太陽能電池之SEM分析 27
4.2 MAPBI3薄膜在不同溫度下之XRD分析 27
4.4 MAPBI3薄膜在不同溫度下之UV-VIS吸收、穿透光譜分析 28
第五章 結論 29
5.1 結論 29
5.2 未來展望 30
參考文獻 54

表目錄
表3.2 實驗材料總表 16
表2.1 不同空氣質量的太陽光輻射單位面積入射功率對照表 31
表3.4.6 PbI2熱蒸鍍參數表 31
表3.4.8 Ag熱蒸鍍參數表 31
表4.1 FTO/TiO2/PCBM/MAPbI3/Spiro/Ag之Voc、Jsc參數表 31


圖目錄
圖1.1各類太陽能電池效率演進[1] 32
圖2.1 AM 0、AM 1.5與6 × 103 K太陽黑體輻射光譜圖[50] 33
圖2.2 空氣質量(AM)輻射單位與其入射角定義示意圖[51] 33
圖2.3.1能量及電荷轉移機制示意圖 33
圖2.3.2有機太陽能電池光電轉換過程示意圖[51] 34
圖2.3.3有機太陽能電池原理能階圖 34
圖2.3.3鈣鈦礦Perovskite晶體結構為正八面 35
圖2.4有機高分子太陽能電池的I-V曲線圖 35
圖2.4.5 Spiro-MeOTAD材料分子結構結構[52] 36
圖3.3.1手套箱 36
圖3.3.2電磁加熱攪拌器 37
圖3.3.3旋轉塗佈機 37
圖3.3.5熱蒸鍍機系統 38
圖3.4 FTO蝕刻化示意圖 38
圖3.4.3 TiO2緻密層成膜結構示意圖 38
圖3.4.4 TiO2多孔層成膜結構示意圖 39
圖3.4.5 PCBM成膜結構示意圖 39
圖3.4.6 Perovskite薄膜成膜結構示意圖 40
圖3.4.7 Spiro-OMeTAD薄膜成膜結構示意圖 40
圖3.4.8有機太陽能電池元件示意圖 41
圖3.5.2 X光繞射儀 41
圖3.5.1發射掃描式電子顯微鏡(FESEM) 42
圖3.5.4穿透光譜量測系統 42
圖3.5.5 PL量測系統 43
圖3.6 I-V量測系統實驗架構圖 43
圖3.7 光電轉換效率量測系統 44
圖4.1 (a) PbI2薄膜經 80°C退火10分鐘所合成鈣鈦礦之表面型態圖 45
圖4.1 (b) PbI2薄膜經100°C退火10分鐘所合成鈣鈦礦之表面型態圖 46
圖4.1 (c) PbI2薄膜經120°C退火10分鐘所合成鈣鈦礦之表面型態圖 47
圖4.1 (d) PbI2薄膜經140°C退火10分鐘所合成鈣鈦礦之表面型態圖 48
圖4.1 (e) PbI2薄膜經100°C退火10分鐘所合成鈣鈦礦之截面型態圖 49
圖4.2(a) PbI2薄膜經退火10分鐘之XRD圖 50
圖4.2(b) MAPbI3薄膜經退火10分鐘之XRD圖 50
圖4.4 (a) MAPbI3薄膜經退火10分鐘之吸收圖 51
圖4.5 太陽能電池之J-V特性曲線圖圖 52
圖4.7 太陽能電池之特性曲線圖 53
圖5.1為PbI2/Perovskite的能階示意圖 53


[1]L. L. Kazmerski, "National Renewable Energy Laboratory (NREL)," CO (2015).
[2]W. S. Yang et al., "High-performance photovoltaic perovskite layers fabricated through intramolecular exchange," vol. 348, no. 6240, pp. 1234-1237, 2015.
[3]L. C. Schmidt et al., "Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles," vol. 136, no. 3, pp. 850-853, 2014.
[4]N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. J. N. m. Seok, "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells," vol. 13, no. 9, pp. 897-903, 2014.
[5]M. Xiao et al., "A fast deposition‐crystallization procedure for highly efficient lead iodide perovskite thin‐film solar cells," vol. 53, no. 37, pp. 9898-9903, 2014.
[6]S. De Wolf et al., "Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance," vol. 5, no. 6, pp. 1035-1039, 2014.
[7]K. Tanaka, T. J. S. Kondo, and T. o. A. Materials, "Bandgap and exciton binding energies in lead-iodide-based natural quantum-well crystals," vol. 4, no. 6, pp. 599-604, 2003.
[8]Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, and P. J. N. P. Meredith, "Electro-optics of perovskite solar cells," vol. 9, no. 2, pp. 106-112, 2015.
[9]Y. Yang et al., "Observation of a hot-phonon bottleneck in lead-iodide perovskites," vol. 10, no. 1, pp. 53-59, 2016.
[10]C.-C. Chen et al., "Interplay between nucleation and crystal growth during the formation of CH3NH3PbI3 thin films and their application in solar cells," vol. 159, pp. 583-589, 2017.
[11]A. Kojima, K. Teshima, Y. Shirai, and T. J. J. o. t. A. C. S. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," vol. 131, no. 17, pp. 6050-6051, 2009.
[12]D. Zhang, S. W. Eaton, Y. Yu, L. Dou, and P. J. J. o. t. A. C. S. Yang, "Solution-phase synthesis of cesium lead halide perovskite nanowires," vol. 137, no. 29, pp. 9230-9233, 2015.
[13]H. Huang et al., "Emulsion synthesis of size-tunable CH3NH3PbBr3 quantum dots: an alternative route toward efficient light-emitting diodes," vol. 7, no. 51, pp. 28128-28133, 2015.
[14]Y. Hassan et al., "Structure‐Tuned Lead Halide Perovskite Nanocrystals," vol. 28, no. 3, pp. 566-573, 2016.
[15]S. Sun, D. Yuan, Y. Xu, A. Wang, and Z. J. A. n. Deng, "Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature," vol. 10, no. 3, pp. 3648-3657, 2016.
[16]S. Tolbert and A. J. S. Alivisatos, "Size dependence of a first order solid-solid phase transition: the wurtzite to rock salt transformation in CdSe nanocrystals," vol. 265, no. 5170, pp. 373-376, 1994.
[17]P.-C. Tseng, "反式雙鈣鈦礦 MAxCs1-xPb (IxBr1-x) 3 薄膜太陽能電池之特性研究," National Central University, 2019.
[18]A. Augusto, S. Y. Herasimenka, R. R. King, S. G. Bowden, and C. J. J. o. A. P. Honsberg, "Analysis of the recombination mechanisms of a silicon solar cell with low bandgap-voltage offset," vol. 121, no. 20, p. 205704, 2017.
[19]R. A. Sinton and A. J. A. P. L. Cuevas, "Contactless determination of current–voltage characteristics and minority‐carrier lifetimes in semiconductors from quasi‐steady‐state photoconductance data," vol. 69, no. 17, pp. 2510-2512, 1996.
[20]P. Baruch, A. De Vos, P. Landsberg, J. J. S. E. M. Parrott, and S. Cells, "On some thermodynamic aspects of photovoltaic solar energy conversion," vol. 36, no. 2, pp. 201-222, 1995.
[21]M. Y. Levy and C. J. S.-s. e. Honsberg, "Rapid and precise calculations of energy and particle flux for detailed-balance photovoltaic applications," vol. 50, no. 7-8, pp. 1400-1405, 2006.
[22]F. Huang et al., "Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells," vol. 10, pp. 10-18, 2014.
[23]K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, and N. J. S. s. c. Miura, "Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3," vol. 127, no. 9-10, pp. 619-623, 2003.
[24]J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. Van Schilfgaarde, and A. J. N. l. Walsh, "Atomistic origins of high-performance in hybrid halide perovskite solar cells," vol. 14, no. 5, pp. 2584-2590, 2014.
[25]W. S. Yang et al., "Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells," vol. 356, no. 6345, pp. 1376-1379, 2017.
[26]S. K. Pathak et al., "Performance and stability enhancement of dye‐sensitized and perovskite solar cells by Al doping of TiO2," vol. 24, no. 38, pp. 6046-6055, 2014.
[27]J. Shi et al., "Control of charge transport in the perovskite CH3NH3PbI3 thin film," vol. 16, no. 4, pp. 842-847, 2015.
[28]林. J. 光. 光電產業與技術情報, "進化後的敏化染料電池-鈣鈦礦太陽能電池," no. 114, pp. 11-15, 2014.
[29]J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. J. N. l. Seok, "Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells," vol. 13, no. 4, pp. 1764-1769, 2013.
[30]H. Park, Y. Park, W. Kim, W. J. J. o. P. Choi, and P. C. P. Reviews, "Surface modification of TiO2 photocatalyst for environmental applications," vol. 15, pp. 1-20, 2013.
[31]R. Wu et al., "Dependence of device performance on the thickness of compact TiO2 layer in perovskite/TiO2 planar heterojunction solar cells," vol. 7, no. 4, p. 043105, 2015.
[32]H. J. Snaith et al., "Anomalous hysteresis in perovskite solar cells," vol. 5, no. 9, pp. 1511-1515, 2014.
[33]R. T. Ginting, E.-S. Jung, M.-K. Jeon, W.-Y. Jin, M. Song, and J.-W. J. N. E. Kang, "Low-temperature operation of perovskite solar cells: With efficiency improvement and hysteresis-less," vol. 27, pp. 569-576, 2016.
[34]Q. Jiang et al., "Enhanced electron extraction using SnO 2 for high-efficiency planar-structure HC (NH 2) 2 PbI 3-based perovskite solar cells," vol. 2, no. 1, pp. 1-7, 2016.
[35]X. Ling et al., "Room-temperature processed Nb2O5 as the electron-transporting layer for efficient planar perovskite solar cells," vol. 9, no. 27, pp. 23181-23188, 2017.
[36]T.-V. Dang, S. Pammi, J. Choi, S.-G. J. S. E. M. Yoon, and S. Cells, "Utilization of AZO/Au/AZO multilayer electrodes instead of FTO for perovskite solar cells," vol. 163, pp. 58-65, 2017.
[37]A. Bera, K. Wu, A. Sheikh, E. Alarousu, O. F. Mohammed, and T. J. T. J. o. P. C. C. Wu, "Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells," vol. 118, no. 49, pp. 28494-28501, 2014.
[38]X. Chen and S. S. J. C. r. Mao, "Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications," vol. 107, no. 7, pp. 2891-2959, 2007.
[39]M. Yu, H. Cui, F. Ai, L. Jiang, J. Kong, and X. J. E. C. Zhu, "Terminated nanotubes: evidence against the dissolution equilibrium theory," vol. 86, pp. 80-84, 2018.
[40]C. Chen, Y. Cheng, Q. Dai, and H. J. S. r. Song, "Radio frequency magnetron sputtering deposition of TiO 2 thin films and their perovskite solar cell applications," vol. 5, p. 17684, 2015.
[41]L. Kavan, N. Tétreault, T. Moehl, and M. J. T. J. o. P. C. C. Grätzel, "Electrochemical characterization of TiO2 blocking layers for dye-sensitized solar cells," vol. 118, no. 30, pp. 16408-16418, 2014.
[42]M. Yu et al., "Studies of oxide growth location on anodization of Al and Ti provide evidence against the field-assisted dissolution and field-assisted ejection theories," vol. 87, pp. 76-80, 2018.
[43]A. E. Shalan et al., "Optimization of a compact layer of TiO 2 via atomic-layer deposition for high-performance perovskite solar cells," vol. 1, no. 7, pp. 1533-1540, 2017.
[44]A. Yella, L.-P. Heiniger, P. Gao, M. K. Nazeeruddin, and M. J. N. l. Grätzel, "Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency," vol. 14, no. 5, pp. 2591-2596, 2014.
[45]Q. Chen et al., "Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells," vol. 14, no. 7, pp. 4158-4163, 2014.
[46]T. Supasai, N. Rujisamphan, K. Ullrich, A. Chemseddine, and T. J. A. P. L. Dittrich, "Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate heating of CH3NH3PbI3 layers," vol. 103, no. 18, p. 183906, 2013.
[47]M. A. J. p. Green, "Solar cells: operating principles, technology, and system applications," 1982.
[48]馮慧元 and 徐雍鎣, "CdxZn1-xSe 量子點之合成與其發光元件應用," 2010.
[49]李. J. 臺北科技大學光電工程系研究所學位論文, "利用釕錯合物提升電流密度之 P3HT/PCBM 可撓式太陽能電池之研製," pp. 1-76, 2011.
[50]P. Beckmann and A. J. a. Spizzichino, "The scattering of electromagnetic waves from rough surfaces," 1987.
[51]周. J. 臺北科技大學光電工程系研究所學位論文, "使用 Ag 金屬粒子輔助式蝕刻技術製作具有微米孔洞結構砷化鎵 混合型光伏元件之研究," pp. 1-89, 2010.
[52]S. P. Singh and P. J. D. T. Nagarjuna, "Organometal halide perovskites as useful materials in sensitized solar cells," vol. 43, no. 14, pp. 5247-5251, 2014.


電子全文 電子全文(網際網路公開日期:20230815)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔