|
[1]L. L. Kazmerski, "National Renewable Energy Laboratory (NREL)," CO (2015). [2]W. S. Yang et al., "High-performance photovoltaic perovskite layers fabricated through intramolecular exchange," vol. 348, no. 6240, pp. 1234-1237, 2015. [3]L. C. Schmidt et al., "Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles," vol. 136, no. 3, pp. 850-853, 2014. [4]N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. J. N. m. Seok, "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells," vol. 13, no. 9, pp. 897-903, 2014. [5]M. Xiao et al., "A fast deposition‐crystallization procedure for highly efficient lead iodide perovskite thin‐film solar cells," vol. 53, no. 37, pp. 9898-9903, 2014. [6]S. De Wolf et al., "Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance," vol. 5, no. 6, pp. 1035-1039, 2014. [7]K. Tanaka, T. J. S. Kondo, and T. o. A. Materials, "Bandgap and exciton binding energies in lead-iodide-based natural quantum-well crystals," vol. 4, no. 6, pp. 599-604, 2003. [8]Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, and P. J. N. P. Meredith, "Electro-optics of perovskite solar cells," vol. 9, no. 2, pp. 106-112, 2015. [9]Y. Yang et al., "Observation of a hot-phonon bottleneck in lead-iodide perovskites," vol. 10, no. 1, pp. 53-59, 2016. [10]C.-C. Chen et al., "Interplay between nucleation and crystal growth during the formation of CH3NH3PbI3 thin films and their application in solar cells," vol. 159, pp. 583-589, 2017. [11]A. Kojima, K. Teshima, Y. Shirai, and T. J. J. o. t. A. C. S. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," vol. 131, no. 17, pp. 6050-6051, 2009. [12]D. Zhang, S. W. Eaton, Y. Yu, L. Dou, and P. J. J. o. t. A. C. S. Yang, "Solution-phase synthesis of cesium lead halide perovskite nanowires," vol. 137, no. 29, pp. 9230-9233, 2015. [13]H. Huang et al., "Emulsion synthesis of size-tunable CH3NH3PbBr3 quantum dots: an alternative route toward efficient light-emitting diodes," vol. 7, no. 51, pp. 28128-28133, 2015. [14]Y. Hassan et al., "Structure‐Tuned Lead Halide Perovskite Nanocrystals," vol. 28, no. 3, pp. 566-573, 2016. [15]S. Sun, D. Yuan, Y. Xu, A. Wang, and Z. J. A. n. Deng, "Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature," vol. 10, no. 3, pp. 3648-3657, 2016. [16]S. Tolbert and A. J. S. Alivisatos, "Size dependence of a first order solid-solid phase transition: the wurtzite to rock salt transformation in CdSe nanocrystals," vol. 265, no. 5170, pp. 373-376, 1994. [17]P.-C. Tseng, "反式雙鈣鈦礦 MAxCs1-xPb (IxBr1-x) 3 薄膜太陽能電池之特性研究," National Central University, 2019. [18]A. Augusto, S. Y. Herasimenka, R. R. King, S. G. Bowden, and C. J. J. o. A. P. Honsberg, "Analysis of the recombination mechanisms of a silicon solar cell with low bandgap-voltage offset," vol. 121, no. 20, p. 205704, 2017. [19]R. A. Sinton and A. J. A. P. L. Cuevas, "Contactless determination of current–voltage characteristics and minority‐carrier lifetimes in semiconductors from quasi‐steady‐state photoconductance data," vol. 69, no. 17, pp. 2510-2512, 1996. [20]P. Baruch, A. De Vos, P. Landsberg, J. J. S. E. M. Parrott, and S. Cells, "On some thermodynamic aspects of photovoltaic solar energy conversion," vol. 36, no. 2, pp. 201-222, 1995. [21]M. Y. Levy and C. J. S.-s. e. Honsberg, "Rapid and precise calculations of energy and particle flux for detailed-balance photovoltaic applications," vol. 50, no. 7-8, pp. 1400-1405, 2006. [22]F. Huang et al., "Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells," vol. 10, pp. 10-18, 2014. [23]K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, and N. J. S. s. c. Miura, "Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3," vol. 127, no. 9-10, pp. 619-623, 2003. [24]J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. Van Schilfgaarde, and A. J. N. l. Walsh, "Atomistic origins of high-performance in hybrid halide perovskite solar cells," vol. 14, no. 5, pp. 2584-2590, 2014. [25]W. S. Yang et al., "Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells," vol. 356, no. 6345, pp. 1376-1379, 2017. [26]S. K. Pathak et al., "Performance and stability enhancement of dye‐sensitized and perovskite solar cells by Al doping of TiO2," vol. 24, no. 38, pp. 6046-6055, 2014. [27]J. Shi et al., "Control of charge transport in the perovskite CH3NH3PbI3 thin film," vol. 16, no. 4, pp. 842-847, 2015. [28]林. J. 光. 光電產業與技術情報, "進化後的敏化染料電池-鈣鈦礦太陽能電池," no. 114, pp. 11-15, 2014. [29]J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. J. N. l. Seok, "Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells," vol. 13, no. 4, pp. 1764-1769, 2013. [30]H. Park, Y. Park, W. Kim, W. J. J. o. P. Choi, and P. C. P. Reviews, "Surface modification of TiO2 photocatalyst for environmental applications," vol. 15, pp. 1-20, 2013. [31]R. Wu et al., "Dependence of device performance on the thickness of compact TiO2 layer in perovskite/TiO2 planar heterojunction solar cells," vol. 7, no. 4, p. 043105, 2015. [32]H. J. Snaith et al., "Anomalous hysteresis in perovskite solar cells," vol. 5, no. 9, pp. 1511-1515, 2014. [33]R. T. Ginting, E.-S. Jung, M.-K. Jeon, W.-Y. Jin, M. Song, and J.-W. J. N. E. Kang, "Low-temperature operation of perovskite solar cells: With efficiency improvement and hysteresis-less," vol. 27, pp. 569-576, 2016. [34]Q. Jiang et al., "Enhanced electron extraction using SnO 2 for high-efficiency planar-structure HC (NH 2) 2 PbI 3-based perovskite solar cells," vol. 2, no. 1, pp. 1-7, 2016. [35]X. Ling et al., "Room-temperature processed Nb2O5 as the electron-transporting layer for efficient planar perovskite solar cells," vol. 9, no. 27, pp. 23181-23188, 2017. [36]T.-V. Dang, S. Pammi, J. Choi, S.-G. J. S. E. M. Yoon, and S. Cells, "Utilization of AZO/Au/AZO multilayer electrodes instead of FTO for perovskite solar cells," vol. 163, pp. 58-65, 2017. [37]A. Bera, K. Wu, A. Sheikh, E. Alarousu, O. F. Mohammed, and T. J. T. J. o. P. C. C. Wu, "Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells," vol. 118, no. 49, pp. 28494-28501, 2014. [38]X. Chen and S. S. J. C. r. Mao, "Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications," vol. 107, no. 7, pp. 2891-2959, 2007. [39]M. Yu, H. Cui, F. Ai, L. Jiang, J. Kong, and X. J. E. C. Zhu, "Terminated nanotubes: evidence against the dissolution equilibrium theory," vol. 86, pp. 80-84, 2018. [40]C. Chen, Y. Cheng, Q. Dai, and H. J. S. r. Song, "Radio frequency magnetron sputtering deposition of TiO 2 thin films and their perovskite solar cell applications," vol. 5, p. 17684, 2015. [41]L. Kavan, N. Tétreault, T. Moehl, and M. J. T. J. o. P. C. C. Grätzel, "Electrochemical characterization of TiO2 blocking layers for dye-sensitized solar cells," vol. 118, no. 30, pp. 16408-16418, 2014. [42]M. Yu et al., "Studies of oxide growth location on anodization of Al and Ti provide evidence against the field-assisted dissolution and field-assisted ejection theories," vol. 87, pp. 76-80, 2018. [43]A. E. Shalan et al., "Optimization of a compact layer of TiO 2 via atomic-layer deposition for high-performance perovskite solar cells," vol. 1, no. 7, pp. 1533-1540, 2017. [44]A. Yella, L.-P. Heiniger, P. Gao, M. K. Nazeeruddin, and M. J. N. l. Grätzel, "Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency," vol. 14, no. 5, pp. 2591-2596, 2014. [45]Q. Chen et al., "Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells," vol. 14, no. 7, pp. 4158-4163, 2014. [46]T. Supasai, N. Rujisamphan, K. Ullrich, A. Chemseddine, and T. J. A. P. L. Dittrich, "Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate heating of CH3NH3PbI3 layers," vol. 103, no. 18, p. 183906, 2013. [47]M. A. J. p. Green, "Solar cells: operating principles, technology, and system applications," 1982. [48]馮慧元 and 徐雍鎣, "CdxZn1-xSe 量子點之合成與其發光元件應用," 2010. [49]李. J. 臺北科技大學光電工程系研究所學位論文, "利用釕錯合物提升電流密度之 P3HT/PCBM 可撓式太陽能電池之研製," pp. 1-76, 2011. [50]P. Beckmann and A. J. a. Spizzichino, "The scattering of electromagnetic waves from rough surfaces," 1987. [51]周. J. 臺北科技大學光電工程系研究所學位論文, "使用 Ag 金屬粒子輔助式蝕刻技術製作具有微米孔洞結構砷化鎵 混合型光伏元件之研究," pp. 1-89, 2010. [52]S. P. Singh and P. J. D. T. Nagarjuna, "Organometal halide perovskites as useful materials in sensitized solar cells," vol. 43, no. 14, pp. 5247-5251, 2014.
|