(3.238.7.202) 您好!臺灣時間:2021/03/02 00:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴宏軒
研究生(外文):LAI, HUNG-HSUAN
論文名稱:使用液晶Savart稜鏡為剪切元件的差分干涉對比顯微鏡
論文名稱(外文):Differential Interference Contrast Microscope (DICM) Using Liquid Crystal Savart Prisms as The Shear Devices
指導教授:林世聰林世聰引用關係
指導教授(外文):LIN, SHYH-TSONG
口試委員:林世聰陳元方林明澤
口試委員(外文):LIN, SHYH-TSONGCHEN, YUAN-FANGLIN, MING-TZER
口試日期:2020-07-23
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:62
中文關鍵詞:差分干涉對比顯微鏡液晶Savart稜鏡液晶相移水平配向
外文關鍵詞:Differential interference contrast microscopeLiquid crystal Savart prismsLiquid crystal phase-shiftingHomogeneous alignment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:29
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本研究提出一套新型反射式的差分干涉對比顯微鏡(DICM),使用液晶Savart稜鏡置於物鏡和樣本之間,用於分出兩道剪切光束後將樣品的輪廓資訊反射回液晶Savart稜鏡,本實驗使用兩個液晶Savart稜鏡分別來控制x方向與y方向剪切,藉由操作液晶Savart稜鏡的電壓來改變所造成的剪切距離和方向,並透過影像擷取與處理來獲得樣品表面輪廓的剪切形貌圖。
本篇研究反射式的DICM的架構規劃、原理與實驗步驟,觀察標準階高片(VLSI Standards SHS-880 QC)、塗層起泡的缺陷(Foam)、洋蔥表皮細胞、人類的口腔細胞,檢測x方向與y方向上的剪切表面輪廓。最後,本研究也使用液晶相移法取代旋轉分析板法來做相移,以實現全電控操作的架構,而此實驗觀察人類紅血球的x與y方向上表面輪廓,並且實驗量測的結果皆驗證了實驗原理。

This research developed a novel differential interference contrast microscope (DICM). It is constructed by placing two liquid crystal Savart prisms shear device in between the objective and sample of a polarizing microscope, and liquid crystal Savart prisms used to split the two shear beams to reflect the contour variation information of the sample back to the liquid crystal Savart prisms, and it evaluates contour variation of samples using the principle of phase-shifting shearing interferometry. Then, we also can use change voltage of liquid crystal Savart prisms in order to switch the shear direction.
In this differential interference contrast microscope configuration, principles and experimental procedures. Moreover, this paper exhibits the experiments using the setup to measure the step height standards (VLSI Standards SHS-880 QC) , coating defects (Foam) , Onion epidermal cells and human oral cells. The different shearing direction image can be obtained by applying different voltages of the liquid crystal Savart prisms. In addition, this research also proposes another configuration that replace the phase-shifter of rotatable analyzer with liquid crystal cell to achieve the phase-shifter. This experiments using the setup to measure the erythrocytes. Finally, the results demonstrate the feasibility and applicability.

目錄
摘要 i
ABSTRACT ii
誌 謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1前言 1
1.2文獻回顧 1
1.2.1暗場顯微鏡[1][2] 1
1.2.2相位顯微鏡[3][4] 3
1.2.3差分干涉對比顯微鏡(DICM) 4
1.2.4方位獨立DICM 7
1.3研究動機 9
1.4 論文架構 10
第二章 實驗相關光學原理 11
2.1干涉術 11
2.2剪切干涉術 11
2.3相移術 12
2.3.1相移調製方式 13
2.3.2五步相移法 15
2.3.3相位展開 16
2.4無限遠補正光學系統 17
2.5向列相液晶 17
第三章 使用液晶Savart稜鏡的DICM 21
3.1光學架設 21
3.2液晶Savart稜鏡 22
3.3 Y方向剪切量測 22
3.4 Y方向剪切量測 26
第四章 液晶Savart稜鏡的製作與校正 27
4.1液晶Savart稜鏡的製作 27
4.2液晶Savart稜鏡的校正 27
第五章 實驗架構 33
5.1 DICM 34
5.2對焦與驅動電路 37
5.3 個人電腦與影像處理系統 38
第六章 實驗流程與結果 39
6.1實驗流程 39
6.2實驗校正 39
6.3實驗結果 41
6.3.1標準階高片量測 41
6.3.2人類的口腔細胞觀察 44
6.3.3系統誤差校正量測 45
6.3.4塗層起泡缺陷觀察 47
6.3.5洋蔥表皮細胞觀察 48
6.3.6人類的紅血球細胞觀察 50
6.4不同電壓的剪切距離證明 54
第七章 實驗討論 55
7.1實驗討論 55
7.2液晶相移的討論 57
7.3剪切距離的討論 57
第八章 結論與未來展望 58
8.1結論 58
8.2未來展望 58
參考文獻 60


[1]B. Guo, J. Yu, H. Liu, X. Liu, and R. Hou, “Research on detecting plankton based on darkfield microscopy,” Proc. SPIE 10021, pp. 100211M (2016).
[2]https://en.wikipedia.org/wiki/Dark-field_microscopy
[3]F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects part I,” Physica 9, pp. 686–698 (1942).
[4]https://www.leica-microsystems.com/science-lab/phase-contrast
[5]Differential Interference Contrast (DIC) Microscopy
https://en.wikipedia.org/wiki/Differential_interference_contrast_microscopy
[6]J. S. Hartman, R. L. Gordon, and D. L. Lessor, “Nomarski Differential Interference-Contrast Microscopy,” Reprint from Zeiss Information NO. 70, 16th Year, pp. 114-120 (1968).
[7]D. L. Lessor, J. S. Hartman, and R. L. Gordon, “Quantitative surface topography determination by Nomarski reflection microscopy. I. Theory,” J. Opt. Soc. Am. vol. 69, pp. 357-366 (1979).
[8]https://en.wikipedia.org/wiki/Nomarski_prism
[9]S. T. Lin, H. X. Trinh, Z. W. Chen, and T. H. Lee, “Phase-shifting differential interference contrast microscope with Savart shear prism and rotatable analyser,” J. Microsc.272, pp. 79-84 (2018).
[10]H. X. Trịnh, S. T. Lin, L. C. Chen, S. L. Yeh, and C. S. Chen, “Differential interference contrast microscopy using Savart plates,” J. Opt. (United Kingdom) vol. 19, pp. 045601 (2017).
[11]S. Chatterjee and Y. P. Kumar, “White light differential interference contrast microscope with a Sagnac interferometer,” Appl. Opt. vol. 53, pp. 296-300 (2014).
[12]M. Sakakura, “Holographic fast gradient light interference microscopy (HF-GLIM),” Electrical Engineering University of Illinois at Urbana-Champaign, Senior Thesis (2020).
[13]T. Nose, S. Ishizaka, K. Okano, N. Fujita, J. Murata, H. Muraguchi, N. Ozaki, M. Honma, and R. Ito, “Lateral shearing properties of twisted nematic liquid-crystal cell and its potential application to differential interference contrast imaging,” Proc. SPIE 10125, pp. 101250O (2017).
[14]T. Nose, S. Ishizaka, K. Okano, N. Fujita, J. Murata, H. Muraguchi, N. Ozaki, M. Honma, and R. Ito, “Differential interference contrast imaging using a pair of twisted nematic cells,” Opt. Lett., vol. 41 pp. 4012-4015 (2016).
[15]M. Shribak, “Quantitative orientation-independent differential interference contrast microscope with fast switching shear direction and bias modulation,” J. Opt. Soc. Am. A Opt Image Sci Vis 30, pp 769-782 (2013).
[16]J. E. Malamy, and M. Shribak, “An orientation-independent DIC microscope allows high resolution imaging of epithelial cell migration and wound healing in a cnidarian model,” J. Microsc. 270, pp. 290-301 (2018).
[17]R. N. Zahreddine, R. H. Cormack, H. Masterson, S. V. King, and C. J. Cogswell, “Real-time quantitative differential interference contrast (DIC) microscopy implemented via novel liquid crystal prisms,” Proc. SPIE 8227, pp. 822710 (2012).
[18]D. Malacara, “Optical shop testing,” Third Edition, John Wiley & Sons, New Jersey (2007).
[19]Y. Watanabe, Y. Hayasaka, M. Sato and N. Tanno, “Full-field optical coherence tomography by achromatic phase shifting with a rotating polarizer,” Appl. Opt. 44, pp. 1387-1392 (2005).
[20]S. S. Helen, M. P. Kothiyal, R. S. Sirohi, “Achromatic phase shifting by a rotating polarizer,” Opt. Commun. vol. 154, pp. 249-254 (1998).
[21]P. Kohns, J. Schirmer, A. Muravski, S. Yakovenko, V. Bezborodov and R. Dabrowski, “Birefringence Measurements of Liquid Crystals and an application: An Achromatic waveplate,” Liq. Crys., vol. 21, pp. 841-846 (1996).
[22]S. H. Lu, C. Y. Wang, C. Y. Hsieh, K. Y. Chiu, and H. Y. Chen, “Full-field optical coherence tomography using nematic liquid-crystal phase shifter,” Appl. Opt., vol. 51, pp. 1361-1366 (2012).
[23]Microscope Objectives, Nikon CFI60 200/60/25 Specification, https://micro.magnet.fsu.edu/primer/anatomy/nikoninfinity.html
[24]K. H. Chen, W. Y. Chang, and J.-H. Chen, “Measurement of the pretilt angle and the cell gap of nematic liquid crystal cells by heterodyne interferometry,” Opt. Express 17(16), pp. 14143-14149 (2009).
[25]許維婷,液晶盒厚度量測方法的研究,國立成功大學,碩士論文,2004。
[26]J. S. Gwag, K. H. Park, G. D. Lee, T. H. , Yoon, and J. C. Kim, “Simple cell gap measurement method for twisted-nematic liquid crystal cells,” Jpn. J. Appl. Phys. vol. 43 pp. 30-32 (2004).
[27]T. Mu, C. Zhang, Q. Li, L. Zhang, Y. Wei, and Q. Chen, “Achromatic Savart polariscope : choice of materials,” Opt. Express 22(5), pp. 5043-5051 (2014).
[28]H. Nouira, J-A. Salgado, N. El-Hayek, S. Ducourtieux, A. Delvallee, N. Anwer, “Setup of a high-precision profilometer and comparison of tactile and optical measurements of standards,” Meas. Sci. Technol. vol. 25, pp. 044016 (2014).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔