(54.236.58.220) 您好!臺灣時間:2021/03/05 00:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊承諭
研究生(外文):YANG, CHENG-YU
論文名稱:鈣鈦礦雙光子吸收係數的量測與應用
論文名稱(外文):Measurement and Application of Two-Photon Absorption Coefficient from Perovskites
指導教授:林家弘林家弘引用關係
指導教授(外文):LIN, JA-HON
口試委員:謝文峰賴暎杰曾宗亮林奎輝林家弘
口試委員(外文):HSIEH, WEN-FENGLAI, YIN-CHIEHTSENG, ZONG-LIANGLIN, KUEI-HUEILIN, JA-HON
口試日期:2020-07-28
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:51
中文關鍵詞:非線性光學雙光子吸收自相干儀鈣鈦礦
外文關鍵詞:Nonlinear opticalTwo photon absorptionautocorrelatorperovskite
相關次數:
  • 被引用被引用:0
  • 點閱點閱:31
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用雙光子螢光光譜和z-scan量測系統進行了鈣鈦礦,包括MAPbBr3單晶和CsPbBr3量子點薄膜的雙光子吸收效應之研究。利用飛秒鈦藍寶石雷射作為鈣鈦礦樣品的泵浦光源,可以分別獲得由自由激子復合與自由載子複合的CsPbBr3量子點薄膜和MAPbBr3雙光子激發之螢光光譜,透過擬合雙光子螢光光譜強度與激發雷射強度的冪次定律關係,可獲得線性方程的斜率接近二,證明了所製備的鈣鈦礦具有雙光子吸收特性。此外我透過溫度相依雙光子螢光光譜特性之量測,藉由擬合螢光強度對溫度之關係可以得到MAPbBr3單晶和CsPbBr3量子點薄膜的激子束縛能分別為50.3 meV與52 meV,並且由螢光光譜之變寬歸咎於激子與縱向聲子之交互作用。本實驗中我也利用800奈米脈衝雷射光源進行Z-scan量測可以獲得雙光子吸收係數,證明CsPbBr3量子點薄膜具備較大的雙光子吸收係數約150 cm / GW,推論是由於受到量子侷限效應。最後,將MAPbBr3單晶和CsPbBr3量子點薄膜作為干涉式自相關儀的非線性介質進行被動鎖模鈦藍寶石雷射的脈衝量測。將量測到自相干波形經過理論擬合後,成功獲得約110 fs的脈衝。這項工作證明了有機-無機和無機三鹵化物鈣鈦礦可以作為超快短脈衝中便捷且低成本的非線性吸收材料。
Two photon absorption (TPA) of perovskite including MAPbBr3 single crystal (SC) and CsPbBr3 quantum dot (QD) films have been investigated by the TPA photoluminescence (PL) and z-scan measurement in this thesis. By the intensity dependent PL using the fs Ti:sapphire laser as a light source, TPA effect has been demonstrated through the power law fitting to reveal the exponent around 2. Besides, temperature dependent TPA PL has been applied for MAPbBr3 SC and CsPbBr3 QD films to obtain the binding energy around 50.3 meV and 52 meV, respectively, and shows the interaction between exciton and LO phonon. Owing to the quantum confinement effect, the relatively large TPA coefficient of CsPbBr3 QD films around 150 cm/GW has been demonstrated by the Z-scan measurement. Finally, I used the TPA PL from both MAPbBr3 SC and CsPbBr3 QD films in combination of the interferometric autocorrelator to obtain the pulse duration of passive mode-locked Ti:sapphire laser around 110 fs. This work demonstrates the possibility of inorganic-organic and inorganic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics.


摘要 i
ABSTRACT ii
致謝 iv
Content v
List of Figure vii
List of Table x
Chapter 1. Introduction 1
1.1 Historical perspective of halide perovskite 1
1.2 Nonlinear absorption of halide perovskite 4
1.3 Applications of nonlinear optics from perovskite 6
1.4 Motivation 9
Chapter 2. Theoretical background 10
2.1 Z-scan 10
2.1.1 Laser light propagates in space 11
2.1.2 Linear and nonlinear transmission 11
2.1.3 The relationship between transmittance and TPA coefficient 12
2.2 Autocorrelator 13
2.2.1 interferometric autocorrelator 13
Chapter 3. Experimental setup 16
3.1 Photoluminescence (PL) measurement 16
3.1.1 PL measurement 16
3.1.2 Temperature dependent PL and photon lifetime measurement 17
3.2 Setup of z-scan 19
3.3 Interferometric autocorrelator 20
Chapter 4. Result and Discussion 23
4.1 Optical properties of halide perovskite 23
4.1.1 Absorption and PL spectrum of MAPbBr3 single crystal (SC) 23
4.1.2 Absorption and PL spectrum of CsPbBr3 Quantum Dots (QDs) 27
4.1.3 Intensity dependent TPA PL spectrum 30
4.2 Temperature dependent PL spectrum 32
4.2.2 Linewidth of PL spectrum 34
4.2.3 Temperature related photon decay trace of CsPbBr3 37
4.3 Two-photon absorption coefficient 39
4.4 Autocorrelation trace of fs mode-locked pulse 43
Chapter 5. Conclusion 44
Reference 45

1.Yuan, Z., et al., Highly luminescent nanoscale quasi-2D layered lead bromide perovskites with tunable emissions. 2016. 52(20): p. 3887-3890.
2.Sutherland, B.R. and E.H.J.N.P. Sargent, Perovskite photonic sources. 2016. 10(5): p. 295.
3.Walters, G., et al., Two-photon absorption in organometallic bromide perovskites. 2015. 9(9): p. 9340-9346.
4.Li, P., et al., Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers. 2017. 9(14): p. 12759-12765.
5.Zou, S., et al., Template-free synthesis of high-yield Fe-doped cesium lead halide perovskite ultralong microwires with enhanced two-photon absorption. 2018. 9(17): p. 4878-4885.
6.Krishnakanth, K.N., et al., Broadband femtosecond nonlinear optical properties of CsPbBr 3 perovskite nanocrystals. 2018. 43(3): p. 603-606.
7.Wei, K., et al., Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr 3 quantum dots. 2016. 41(16): p. 3821-3824.
8.Leijtens, T., et al., Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility. 2014. 8(7): p. 7147-7155.
9.Xing, G., et al., Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. 2013. 342(6156): p. 344-347.
10.Shi, D., et al., Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. 2015. 347(6221): p. 519-522.
11.De Wolf, S., et al., Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. 2014. 5(6): p. 1035-1039.
12.Tang, H., S. He, and C.J.N.r.l. Peng, A short progress report on high-efficiency perovskite solar cells. 2017. 12(1): p. 410.
13.Huang, H., et al., Emulsion synthesis of size-tunable CH3NH3PbBr3 quantum dots: an alternative route toward efficient light-emitting diodes. 2015. 7(51): p. 28128-28133.
14.Zhu, H., et al., Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. 2015. 14(6): p. 636-642.
15.Fang, Y. and J.J.A.m. Huang, Resolving weak light of sub‐picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction. 2015. 27(17): p. 2804-2810.
16.Polavarapu, L., et al., Advances in Quantum‐Confined Perovskite Nanocrystals for Optoelectronics. 2017. 7(16): p. 1700267.
17.Protesescu, L., et al., Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. 2015. 15(6): p. 3692-3696.
18.Swarnkar, A., et al., Colloidal CsPbBr3 perovskite nanocrystals: luminescence beyond traditional quantum dots. 2015. 127(51): p. 15644-15648.
19.Shinde, A., R. Gahlaut, and S.J.T.J.o.P.C.C. Mahamuni, Low-temperature photoluminescence studies of CsPbBr3 quantum dots. 2017. 121(27): p. 14872-14878.
20.Franken, e.P., et al., Generation of optical harmonics. 1961. 7(4): p. 118.
21.Xu, J., et al., Organized chromophoric assemblies for nonlinear optical materials: towards (Sub) wavelength scale architectures. 2015. 11(9-10): p. 1113-1129.
22.Tokel, O., et al., In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon. 2017. 11(10): p. 639-645.
23.Gu, B., et al., Molecular nonlinear optics: recent advances and applications. 2016. 8(2): p. 328-369.
24.Yue, S., et al., Multimodal nonlinear optical microscopy. 2011. 5(4): p. 496-512.
25.Jiang, M.h. and Q.J.A.M. Fang, Organic and semiorganic nonlinear optical materials. 1999. 11(13): p. 1147-1151.
26.Kumar, R.A., et al., Recent advances in rare earth-based borate single crystals: Potential materials for nonlinear optical and laser applications. 2013. 59(3): p. 113-132.
27.Li, J., et al., Two-photon absorption and emission in CsPb (Br/I) 3 cesium lead halide perovskite quantum dots. 2016. 18(41): p. 7945-7949.
28.Wang, Y., et al., Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals. 2016. 16(1): p. 448-453.
29.Zheng, X., M. Feng, and H.J.J.o.M.C.C. Zhan, Giant optical limiting effect in Ormosil gel glasses doped with graphene oxide materials. 2013. 1(41): p. 6759-6766.
30.NAKAZAWA, M., et al., Measurement of two-photon absorption coefficient of transparent polycrystalline zinc oxide with c-axis orientation. 1996. 104(1214): p. 918-921.
31.Baltramiejunas, R., J. Vaitkus, and V.J.S.P.J. Gavryushin, Light absorption by nonequilibrium, two-photon-generated, free and localized carriers in ZnTe single crystals. 1984. 60: p. 43-48.
32.He, G.S., et al., Two-and three-photon absorption induced emission, optical limiting and stabilization of CdTe/CdS/ZnS quantum tripods system. 2010. 46(6): p. 931-936.
33.Kriso, C., et al., Nonlinear refraction in CH 3 NH 3 PbBr 3 single crystals. 2020. 45(8): p. 2431-2434.
34.Wei, T.C., et al., Nonlinear absorption applications of CH3NH3PbBr3 perovskite crystals. 2018. 28(18): p. 1707175.
35.Yuan, X., et al., Thermal degradation of luminescence in inorganic perovskite CsPbBr 3 nanocrystals. 2017. 19(13): p. 8934-8940.
36.Li, J., et al., Temperature-dependent photoluminescence of inorganic perovskite nanocrystal films. 2016. 6(82): p. 78311-78316.
37.Ai, B., et al., Low temperature photoluminescence properties of CsPbBr 3 quantum dots embedded in glasses. 2017. 19(26): p. 17349-17355.
38.Dai, J., et al., Comparative investigation on temperature-dependent photoluminescence of CH 3 NH 3 PbBr 3 and CH (NH 2) 2 PbBr 3 microstructures. 2016. 4(20): p. 4408-4413.
39.Rana, S., et al., Temperature-dependent electroabsorption and electrophotoluminescence and exciton binding energy in MAPbBr3 perovskite quantum dots. 2019. 123(32): p. 19927-19937.
40.Sheik-Bahae, M., et al., Sensitive measurement of optical nonlinearities using a single beam. 1990. 26(4): p. 760-769.
41.Naganuma, K., K. Mogi, and H.J.I.J.o.Q.E. Yamada, General method for ultrashort light pulse chirp measurement. 1989. 25(6): p. 1225-1233.
42.Wang, Q. and W.J.O.l. Wu, Temperature and excitation wavelength-dependent photoluminescence of CH 3 NH 3 PbBr 3 crystal. 2018. 43(20): p. 4923-4926.
43.Urbach, F.J.P.R., The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. 1953. 92(5): p. 1324.
44.Wei, T.C., et al., Photostriction of CH3NH3PbBr3 perovskite crystals. 2017. 29(35): p. 1701789.
45.Sadhanala, A., et al., Preparation of single-phase films of CH3NH3Pb (I1–x Br x) 3 with sharp optical band edges. 2014. 5(15): p. 2501-2505.
46.Tauc, J., R. Grigorovici, and A.J.p.s.s. Vancu, Optical properties and electronic structure of amorphous germanium. 1966. 15(2): p. 627-637.
47.Sebastian, M., et al., Excitonic emissions and above-band-gap luminescence in the single-crystal perovskite semiconductors CsPbB r 3 and CsPbC l 3. 2015. 92(23): p. 235210.
48.Saouma, F.O., et al., Multiphoton absorption order of CsPbBr3 as determined by wavelength-dependent nonlinear optical spectroscopy. 2017. 8(19): p. 4912-4917.
49.Shi, H. and M.-H.J.P.R.B. Du, Shallow halogen vacancies in halide optoelectronic materials. 2014. 90(17): p. 174103.
50.Wang, D., et al., Photon-induced carrier recombination in the nonlayered-structured hybrid organic-inorganic perovskite nano-sheets. 2018. 26(21): p. 27504-27514.
51.Yang, Y., et al., Comparison of recombination dynamics in CH3NH3PbBr3 and CH3NH3PbI3 perovskite films: influence of exciton binding energy. 2015. 6(23): p. 4688-4692.
52.Jiang, D.-S., H. Jung, and K.J.J.o.a.p. Ploog, Temperature dependence of photoluminescence from GaAs single and multiple quantum‐well heterostructures grown by molecular‐beam epitaxy. 1988. 64(3): p. 1371-1377.
53.Wolf, C. and T.-W.J.M.t.e. Lee, Exciton and lattice dynamics in low-temperature processable CsPbBr3 thin-films. 2018. 7: p. 199-207.
54.Chen, Z., et al., Photoluminescence study of polycrystalline CsSnI3 thin films: Determination of exciton binding energy. 2012. 132(2): p. 345-349.
55.Ji, H., et al., Vapor-assisted solution approach for high-quality perovskite CH3NH3PbBr3 thin films for high-performance green light-emitting diode applications. 2017. 9(49): p. 42893-42904.
56.Rudin, S., T. Reinecke, and B.J.P.R.B. Segall, Temperature-dependent exciton linewidths in semiconductors. 1990. 42(17): p. 11218.
57.Yang, L., et al., Nonlinear absorption and temperature-dependent fluorescence of perovskite FAPbBr 3 nanocrystal. 2018. 43(1): p. 122-125.
58.Woo, H.C., et al., Temperature-dependent photoluminescence of CH3NH3PbBr3 perovskite quantum dots and bulk counterparts. 2018. 9(14): p. 4066-4074.
59.Zhang, C., et al., Exciton photoluminescence of CsPbBr 3@ SiO 2 quantum dots and its application as a phosphor material in light-emitting devices. 2020. 10(4): p. 1007-1017.
60.Du, W., et al., Unveiling lasing mechanism in CsPbBr 3 microsphere cavities. 2019. 11(7): p. 3145-3153.
61.Gaponenko, M.S., et al., Temperature-dependent photoluminescence of PbS quantum dots in glass: Evidence of exciton state splitting and carrier trapping. 2010. 82(12): p. 125320.
62.Lu, W.G., et al., Nonlinear Optical Properties of Colloidal CH3NH3PbBr3 and CsPbBr3 Quantum Dots: A Comparison Study Using Z‐Scan Technique. 2016. 4(11): p. 1732-1737.
63.Kalanoor, B.S., et al., Third-order optical nonlinearities in organometallic methylammonium lead iodide perovskite thin films. 2016. 3(3): p. 361-370.
64.Zhang, J., et al., Thickness-dependent nonlinear optical properties of CsPbBr 3 perovskite nanosheets. 2017. 42(17): p. 3371-3374.

電子全文 電子全文(網際網路公開日期:20250814)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔