|
1.Yuan, Z., et al., Highly luminescent nanoscale quasi-2D layered lead bromide perovskites with tunable emissions. 2016. 52(20): p. 3887-3890. 2.Sutherland, B.R. and E.H.J.N.P. Sargent, Perovskite photonic sources. 2016. 10(5): p. 295. 3.Walters, G., et al., Two-photon absorption in organometallic bromide perovskites. 2015. 9(9): p. 9340-9346. 4.Li, P., et al., Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers. 2017. 9(14): p. 12759-12765. 5.Zou, S., et al., Template-free synthesis of high-yield Fe-doped cesium lead halide perovskite ultralong microwires with enhanced two-photon absorption. 2018. 9(17): p. 4878-4885. 6.Krishnakanth, K.N., et al., Broadband femtosecond nonlinear optical properties of CsPbBr 3 perovskite nanocrystals. 2018. 43(3): p. 603-606. 7.Wei, K., et al., Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr 3 quantum dots. 2016. 41(16): p. 3821-3824. 8.Leijtens, T., et al., Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility. 2014. 8(7): p. 7147-7155. 9.Xing, G., et al., Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. 2013. 342(6156): p. 344-347. 10.Shi, D., et al., Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. 2015. 347(6221): p. 519-522. 11.De Wolf, S., et al., Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. 2014. 5(6): p. 1035-1039. 12.Tang, H., S. He, and C.J.N.r.l. Peng, A short progress report on high-efficiency perovskite solar cells. 2017. 12(1): p. 410. 13.Huang, H., et al., Emulsion synthesis of size-tunable CH3NH3PbBr3 quantum dots: an alternative route toward efficient light-emitting diodes. 2015. 7(51): p. 28128-28133. 14.Zhu, H., et al., Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. 2015. 14(6): p. 636-642. 15.Fang, Y. and J.J.A.m. Huang, Resolving weak light of sub‐picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction. 2015. 27(17): p. 2804-2810. 16.Polavarapu, L., et al., Advances in Quantum‐Confined Perovskite Nanocrystals for Optoelectronics. 2017. 7(16): p. 1700267. 17.Protesescu, L., et al., Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. 2015. 15(6): p. 3692-3696. 18.Swarnkar, A., et al., Colloidal CsPbBr3 perovskite nanocrystals: luminescence beyond traditional quantum dots. 2015. 127(51): p. 15644-15648. 19.Shinde, A., R. Gahlaut, and S.J.T.J.o.P.C.C. Mahamuni, Low-temperature photoluminescence studies of CsPbBr3 quantum dots. 2017. 121(27): p. 14872-14878. 20.Franken, e.P., et al., Generation of optical harmonics. 1961. 7(4): p. 118. 21.Xu, J., et al., Organized chromophoric assemblies for nonlinear optical materials: towards (Sub) wavelength scale architectures. 2015. 11(9-10): p. 1113-1129. 22.Tokel, O., et al., In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon. 2017. 11(10): p. 639-645. 23.Gu, B., et al., Molecular nonlinear optics: recent advances and applications. 2016. 8(2): p. 328-369. 24.Yue, S., et al., Multimodal nonlinear optical microscopy. 2011. 5(4): p. 496-512. 25.Jiang, M.h. and Q.J.A.M. Fang, Organic and semiorganic nonlinear optical materials. 1999. 11(13): p. 1147-1151. 26.Kumar, R.A., et al., Recent advances in rare earth-based borate single crystals: Potential materials for nonlinear optical and laser applications. 2013. 59(3): p. 113-132. 27.Li, J., et al., Two-photon absorption and emission in CsPb (Br/I) 3 cesium lead halide perovskite quantum dots. 2016. 18(41): p. 7945-7949. 28.Wang, Y., et al., Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals. 2016. 16(1): p. 448-453. 29.Zheng, X., M. Feng, and H.J.J.o.M.C.C. Zhan, Giant optical limiting effect in Ormosil gel glasses doped with graphene oxide materials. 2013. 1(41): p. 6759-6766. 30.NAKAZAWA, M., et al., Measurement of two-photon absorption coefficient of transparent polycrystalline zinc oxide with c-axis orientation. 1996. 104(1214): p. 918-921. 31.Baltramiejunas, R., J. Vaitkus, and V.J.S.P.J. Gavryushin, Light absorption by nonequilibrium, two-photon-generated, free and localized carriers in ZnTe single crystals. 1984. 60: p. 43-48. 32.He, G.S., et al., Two-and three-photon absorption induced emission, optical limiting and stabilization of CdTe/CdS/ZnS quantum tripods system. 2010. 46(6): p. 931-936. 33.Kriso, C., et al., Nonlinear refraction in CH 3 NH 3 PbBr 3 single crystals. 2020. 45(8): p. 2431-2434. 34.Wei, T.C., et al., Nonlinear absorption applications of CH3NH3PbBr3 perovskite crystals. 2018. 28(18): p. 1707175. 35.Yuan, X., et al., Thermal degradation of luminescence in inorganic perovskite CsPbBr 3 nanocrystals. 2017. 19(13): p. 8934-8940. 36.Li, J., et al., Temperature-dependent photoluminescence of inorganic perovskite nanocrystal films. 2016. 6(82): p. 78311-78316. 37.Ai, B., et al., Low temperature photoluminescence properties of CsPbBr 3 quantum dots embedded in glasses. 2017. 19(26): p. 17349-17355. 38.Dai, J., et al., Comparative investigation on temperature-dependent photoluminescence of CH 3 NH 3 PbBr 3 and CH (NH 2) 2 PbBr 3 microstructures. 2016. 4(20): p. 4408-4413. 39.Rana, S., et al., Temperature-dependent electroabsorption and electrophotoluminescence and exciton binding energy in MAPbBr3 perovskite quantum dots. 2019. 123(32): p. 19927-19937. 40.Sheik-Bahae, M., et al., Sensitive measurement of optical nonlinearities using a single beam. 1990. 26(4): p. 760-769. 41.Naganuma, K., K. Mogi, and H.J.I.J.o.Q.E. Yamada, General method for ultrashort light pulse chirp measurement. 1989. 25(6): p. 1225-1233. 42.Wang, Q. and W.J.O.l. Wu, Temperature and excitation wavelength-dependent photoluminescence of CH 3 NH 3 PbBr 3 crystal. 2018. 43(20): p. 4923-4926. 43.Urbach, F.J.P.R., The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. 1953. 92(5): p. 1324. 44.Wei, T.C., et al., Photostriction of CH3NH3PbBr3 perovskite crystals. 2017. 29(35): p. 1701789. 45.Sadhanala, A., et al., Preparation of single-phase films of CH3NH3Pb (I1–x Br x) 3 with sharp optical band edges. 2014. 5(15): p. 2501-2505. 46.Tauc, J., R. Grigorovici, and A.J.p.s.s. Vancu, Optical properties and electronic structure of amorphous germanium. 1966. 15(2): p. 627-637. 47.Sebastian, M., et al., Excitonic emissions and above-band-gap luminescence in the single-crystal perovskite semiconductors CsPbB r 3 and CsPbC l 3. 2015. 92(23): p. 235210. 48.Saouma, F.O., et al., Multiphoton absorption order of CsPbBr3 as determined by wavelength-dependent nonlinear optical spectroscopy. 2017. 8(19): p. 4912-4917. 49.Shi, H. and M.-H.J.P.R.B. Du, Shallow halogen vacancies in halide optoelectronic materials. 2014. 90(17): p. 174103. 50.Wang, D., et al., Photon-induced carrier recombination in the nonlayered-structured hybrid organic-inorganic perovskite nano-sheets. 2018. 26(21): p. 27504-27514. 51.Yang, Y., et al., Comparison of recombination dynamics in CH3NH3PbBr3 and CH3NH3PbI3 perovskite films: influence of exciton binding energy. 2015. 6(23): p. 4688-4692. 52.Jiang, D.-S., H. Jung, and K.J.J.o.a.p. Ploog, Temperature dependence of photoluminescence from GaAs single and multiple quantum‐well heterostructures grown by molecular‐beam epitaxy. 1988. 64(3): p. 1371-1377. 53.Wolf, C. and T.-W.J.M.t.e. Lee, Exciton and lattice dynamics in low-temperature processable CsPbBr3 thin-films. 2018. 7: p. 199-207. 54.Chen, Z., et al., Photoluminescence study of polycrystalline CsSnI3 thin films: Determination of exciton binding energy. 2012. 132(2): p. 345-349. 55.Ji, H., et al., Vapor-assisted solution approach for high-quality perovskite CH3NH3PbBr3 thin films for high-performance green light-emitting diode applications. 2017. 9(49): p. 42893-42904. 56.Rudin, S., T. Reinecke, and B.J.P.R.B. Segall, Temperature-dependent exciton linewidths in semiconductors. 1990. 42(17): p. 11218. 57.Yang, L., et al., Nonlinear absorption and temperature-dependent fluorescence of perovskite FAPbBr 3 nanocrystal. 2018. 43(1): p. 122-125. 58.Woo, H.C., et al., Temperature-dependent photoluminescence of CH3NH3PbBr3 perovskite quantum dots and bulk counterparts. 2018. 9(14): p. 4066-4074. 59.Zhang, C., et al., Exciton photoluminescence of CsPbBr 3@ SiO 2 quantum dots and its application as a phosphor material in light-emitting devices. 2020. 10(4): p. 1007-1017. 60.Du, W., et al., Unveiling lasing mechanism in CsPbBr 3 microsphere cavities. 2019. 11(7): p. 3145-3153. 61.Gaponenko, M.S., et al., Temperature-dependent photoluminescence of PbS quantum dots in glass: Evidence of exciton state splitting and carrier trapping. 2010. 82(12): p. 125320. 62.Lu, W.G., et al., Nonlinear Optical Properties of Colloidal CH3NH3PbBr3 and CsPbBr3 Quantum Dots: A Comparison Study Using Z‐Scan Technique. 2016. 4(11): p. 1732-1737. 63.Kalanoor, B.S., et al., Third-order optical nonlinearities in organometallic methylammonium lead iodide perovskite thin films. 2016. 3(3): p. 361-370. 64.Zhang, J., et al., Thickness-dependent nonlinear optical properties of CsPbBr 3 perovskite nanosheets. 2017. 42(17): p. 3371-3374.
|