(44.192.112.123) 您好!臺灣時間:2021/03/09 00:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊育陞
研究生(外文):YANG, YU-SHENG
論文名稱:高摻銩矽酸鹽光纖之被動式Q開關雷射
論文名稱(外文):Passively Q-Switched Laser with Highly Thulium-Doped Silicate Fiber
指導教授:李穎玟
指導教授(外文):LEE, YIN-WEN
口試委員:李穎玟陳建銘黃升龍
口試委員(外文):LEE, YIN-WENCHEN, CHIEN-MINGHUANG, SHENG-LUNG
口試日期:2020-07-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:53
中文關鍵詞:銩離子矽酸鹽光纖光纖雷射Q開關雷射
外文關鍵詞:Thulium ionSilicate fiberFiber laserQ -switched laser
相關次數:
  • 被引用被引用:0
  • 點閱點閱:27
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來2μm波段的雷射發展極為迅速波段的雷射發展極為迅速,主要是因為此波段相較於其他的雷射對於人眼更為安全,並且廣泛被應用在醫療及材料加工上。
本實驗我們所探討的是使用摻雜濃度為5wt.%以及7wt.%的摻銩矽酸鹽光纖來產生被動式Q開關雷射,並且使用半導體飽和吸收鏡來作為開關雷射,並且使用半導體飽和吸收鏡來作為開關雷射,並且使用半導體飽和吸收鏡來作為脈衝調變元件,元件,藉由高濃度摻雜的增益光纖,我們能達到的增益光纖,我們能達到的增益光纖,我們能達到的增益光纖,我們能達到較大單位長度增益,使所需的雷射所需的雷射腔長縮短。
另外,我們利用Liekki模擬軟體針對所需增益光纖長度進行優化,結果發現,當摻雜濃度為7wt.%的增益光纖長度在6cm下會得到較高的斜向效率,因下會得到較高的斜向效率,因此我們在實驗上將增益光纖長度從9.7cm持續縮短至6.0cm來進行雷射測試,並且探討不同長度下的連續輸出與Q開關雷射之結果。
In recent years, 2 μm lasers have been developed extremely rapidly, mainly because this wavelength is relatively safe for human eyes, and widely used in medical treatment and material processing.
In this experiment, we use 5 wt. % and 7 wt% thulium-doped silicate fibers as well as semiconductor saturable absorber mirrors to generate passive Q-switched lasers. With the gain fiber of high concentration, we can achieve large gain per unit length and shorten the required length.
In addition, we use the Liekki simulation software to optimize the length of the gain fiber. The simulation show the highest slope efficiency will be obtained with a 6 cm 7 wt.% Tm3+ doped silicate fiber.We further experimentally compare the performance of CW and Q-switched Tm3+-doped silicate fiber lasers with the length ranging from 6.0 cm to 9.7 cm.
摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1研究動機 1
1.2論文內容及章節概要 3
第二章 光纖雷射之廣論 4
2.1 光纖雷射架構 4
2.1.1幫浦光源(pump source) 4
2.1.2 共振腔(cavity) 5
2.1.3 增益介質(gain medium) 7
2.2光纖雷射輸出模式 8
第三章 摻銩光纖之廣論 9
3.1摻雜稀土元素之光纖雷射歷史 9
3.2銩離子材料介紹 10
3.3高濃度摻銩矽酸鹽光纖材料製造 12
3.4高濃度摻銩矽酸輸出結果 12
第四章 Q開關雷射原理 16
4.1 Q開關雷射種類 16
4.2 被動式Q開關雷射機制 17
4.3 Q開關雷射之速率方程式 18
4.4 半導體飽和吸收鏡SESAM 20
第五章 被動式Q開關摻銩矽酸鹽光纖雷射實驗架構與實驗結果 22
5.1摻銩矽酸鹽光纖之Q開關雷射實驗架構 22
5.2 5wt.%濃度之摻銩矽酸鹽光纖Q開關雷射實驗結果 24
5.2.1 5wt.%濃度之摻銩矽酸鹽光纖CW與Q開關雷射輸出比較 24
5.2.2輸出功率與脈衝能量 26
5.2.3 重複頻率與脈衝寬度 26
5.2.4 單一脈衝之時域圖形 28
5.3 7wt.%濃度之摻銩矽酸鹽光纖Q開關雷射實驗結果 30
5.3.1 9.7 cm長7wt.%濃度之摻銩矽酸鹽光纖 CW與Q開關雷射輸出比較 30
5.3.2 輸出功率與脈衝能量 31
5.3.3 重複頻率與脈衝寬度 32
5.3.4 單一脈衝之時域圖形 33
5.4.1 8.4 cm長7wt.%濃度之摻銩矽酸鹽光纖 CW與Q開關雷射輸出比較 34
5.4.2 輸出功率與脈衝能量 34
5.4.3 重複頻率與脈衝寬度 35
5.4.4單一脈衝之時域圖形 36
5.5.1 7.8 cm長7wt.%濃度之摻銩矽酸鹽光纖 CW與Q開關雷射輸出比較 36
5.5.2 輸出功率與脈衝能量 37
5.5.3 重複頻率與脈衝寬度 38
5.5.4單一脈衝之時域圖形 39
5.6.1 7 cm長7wt.%濃度之摻銩矽酸鹽光纖 CW與Q開關雷射輸出比較 40
5.6.2 輸出功率與脈衝能量 41
5.6.3 重複頻率與脈衝寬度 41
5.6.4單一脈衝之時域圖形 43
5.7.1 6cm長7wt.%濃度之摻銩矽酸鹽光纖 CW與Q開關雷射輸出比較 43
5.7.2 輸出功率與脈衝能量 44
5.7.3 重複頻率與脈衝寬度 45
5.7.4單一脈衝之時域圖形 46
5.8 相關理論分析 47
第六章 結論與未來展望 49
6.1 研究結果統整 49
6.2 未來展望 50
參考資料 51
[1] D. C. Hanna, R. M. Percival, R. G. Smart, and A. C. Tropper, “Efficient and tunable operation of a Tm-doped fibre l9aser.” Opt. Communications. 75(3,4), 283-286 (1990).
[2] W. L. Barnes and J. E. Townsend, “Highly tunable and efficient diode pumped operation of Tm3+doped fibre lasers.” Electron. Lett. 26(11), 746-747 (1990).
[3] D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry,R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser.” Electron. Lett. 24(19), 1222-1223 (1988).
[4] D. Theisen-Kunde, V. Ott, R. Brinkmann, R. Keller, “Hemostasis of Dissected Vessels Using a cw 2lm-Laser-Scalpel.” European Conference on Biomedical Optics. (2005).
[5] Karsten Scholle, Samir Lamrini, Philipp Koopmann and Peter Fuhrberg, “2 µm Laser Sources and Their Possible Applications
[6] G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petro, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 μm doppler lidar for wind measurements,” Opt. Eng., Vol. 46, Issue 11, pp. 116201-116214,2007.
[7] Kang, Z., et al. "Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber." Laser Physics Letters 12.4 (2015): 045105.
[8] Wang, Qing, et al. "Mode-locked 2 μm laser with highly thulium-doped silicate fiber." Optics letters 34.23 (2009): 3616-3618.
[9] W. Korchner, “Solid State Laser Engineering.” Springer, New York, pp.120.(2006)
[10] W. Korchner, “Solid State Laser Engineering.” Springer, New York, pp.120.(2006)
[11] Luo, L. G., and P. L. Chu. "Optical secure communications with chaotic erbium-doped fiber lasers." JOSA B 15.10 (1998): 2524-2530.
[12] Y. W. Lee, “Power scaling of Yb3+-doped phosphate fiber lasers and amplifiers.” Ph. D. Thesis, Stanford University, California, U. S. A. (2008).
[13] Y. W. Lee, “Heavily Tm3+ -Doped Silicate Fiber for High-Gain Fiber Amplifiers”
[14] Chen, Z. D., Wang, Y. G., Li, L., Lv, R. D., Wei, L. L., Liu, S. C., ... & Wang, X. (2018). Reduced graphene oxide as saturable absorbers for erbium-doped passively mode-locked fiber laser. Chinese Physics B, 27(8), 084206.
[15] Rosol, A. H. A., et al. "Graphene Oxide saturable absorber for generating eye-safe Q-switched fiber laser." IOP Conference Series: Materials Science and Engineering. Vol. 210. No. 1. IOP Publishing, 2017.
[16] Hönninger, Clemens, et al. "Q-switching stability limits of continuous-wave passive mode locking." JOSA B 16.1 (1999): 46-56.
[17] R. K. Willaidson,Nonlinear Optics in Semiconductors II,1999
[18] Y. W. Lee, “Power scaling of Yb3+-doped phosphate fiber lasers and amplifiers.” Ph. D. Thesis, Stanford University, California, U. S. A. (2008).
[19] Rosol, A. H. A., et al. "Graphene Oxide saturable absorber for generating eye-safe Q-switched fiber laser." IOP Conference Series: Materials Science and Engineering. Vol. 210. No. 1. IOP Publishing, 2017.
[20] R. K. Willaidson,Nonlinear Optics in Semiconductors II,1999
[21] 蔡柏賢,高功率摻鈥光纖雷射之幫浦光源的相關研究,碩士論文,台北科技大學,台北,2011年
[22] Y. F. Chen, Y. P. Lan, and H. L. Chang. "Analytical Model for Design Criteria of Passively Q-Switched Lasers "
[23] Jingang Liu, Deyuan Shen, Siu-Chung Tam, and Yee-Loy Lam. "Modeling Pulse Shape of Q-Switched Lasers"
[24] S. P. Ng, D. Y. Tang, L. J. Qian, and L. J. Qin. "Satellite Pulse Generation in Diode-Pumped Passively Q-Switched Nd:GdVO4 Lasers "
[25] Danny J. Krebs, Anne-Marie Novo-Gradac, Steven X. Li, Steven J. Lindauer, Robert S. Afzal, and Anthony W. Yu"Compact, passively Q-switched Nd:YAG laser for the MESSENGER mission to Mercury "
[26] G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller. "Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers"
[27] Yizhong Huang, Zhengqian Luo, Yingyue Li, Min Zhong, Bin Xu, Kaijun Che, Huiying Xu, Zhiping Cai, Jian Peng, and Jian Weng. "Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber"
電子全文 電子全文(網際網路公開日期:20250630)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔