(3.239.33.139) 您好!臺灣時間:2021/03/03 10:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:柯人文
研究生(外文):KE, JEN-WEN
論文名稱:應用電液壓煞車系統於車輛減速度模糊控制
論文名稱(外文):Fuzzy Control of Vehicle Deceleration Using Electro-Hydraulic Braking System
指導教授:陳柏全陳柏全引用關係
指導教授(外文):CHEN, BO-CHIUAN
口試委員:陳正夫陳志鏗陳柏全
口試委員(外文):CHEN, ZHENG-FUCHEN, CHIH-KENGCHEN, BO-CHIUAN
口試日期:2020-07-30
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:車輛工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:51
中文關鍵詞:液壓模型步進增壓步進減壓減速度控制模糊控制硬體在迴路
外文關鍵詞:hydraulic dynamicsstep pressure increasestep pressure decreasedeceleration controlfuzzy controlhardware-in-the-loop
相關次數:
  • 被引用被引用:0
  • 點閱點閱:50
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文利用汽車電液壓煞車模組開發出減速度控制,首先透過該模組的電磁閥與馬達動態響應關係建立液壓模型。本文利用減速度誤差及誤差變化量作為模糊控制器輸入源並即時計算出理想的增減壓百分比,並轉換成增減壓的電磁閥開關命令及電磁閥於單位取樣時間內對應的工作週期,以實現接近線性電磁閥的增減壓性能。並利用電液壓煞車模組內的電磁閥脈寬調變發展出步進增減壓,使減速度控制過程中能以微小的油壓變化量展現更佳的控制效果。若受到較低路面摩擦係數影響導致無法達到目標減速度時,將會透過路面識別調整當前減速度命令,以避免輪胎鎖死。最後以CarSim結合MATLAB/Simulink進行驗證,模擬結果與硬體在迴路實驗結果皆顯示本文提出之控制策略在高摩擦與低摩擦路面均可達到所需的目標減速度,若路面摩擦係數較低時,亦可有效經由路面識別調整目標減速度,以避免輪胎鎖死。
Deceleration control using Electro-Hydraulic Braking (EHB) is developed in this thesis. First, the hydraulic model is established using the dynamic responses of solenoid valves and the motor. Longitudinal slip ratio and vehicle speed can be estimated using the measured longitudinal acceleration and wheel speeds. The deceleration tracking error and the error change are used as inputs for the fuzzy controller to calculate the percentage command to increase or decrease the brake pressure. In order to approximate the performance of linear solenoid valve, the percentage command is transformed to trigger signals for pressure increasing or decreasing modes and corresponding duty cycles of solenoid valves in the unit sample time. Pulse width modulation (PWM) applied to solenoid valves of EHB is used to develop step pressure increase and step pressure decrease, such that better control performance can be achieved with smaller oil pressure change for deceleration control. When the desired deceleration command cannot be achieved due to low friction road surface, road identification can adjust the deceleration command to prevent wheel lockup. Finally, CarSim with MATLAB/Simulink is used for verification. Simulation results and hardware-in-the-loop experiment results show that the proposed control strategy can effectively achieve desired deceleration responses on both high and low friction road surfaces. It can also effectively adjust the desired deceleration command through road identification on low friction road surface to prevent wheel lockup.
摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.3 研究目的 4
1.4 論文架構 4
第二章 電液壓煞車系統模型 5
2.1 液壓模型 5
2.2 系統參數識別 11
第三章 控制策略 20
3.1 輪速濾波器設計 21
3.2 車速估測器設計 22
3.3 模糊控制器 24
3.4 On/Off控制策略 26
3.5 路面識別 27
第四章 模擬結果 30
4.1 高摩擦係數模擬結果 30
4.2 低摩擦係數模擬結果 33
第五章 硬體在迴路實驗 35
5.1 實驗平台建立 35
5.2 高摩擦係數路面實驗結果 39
5.3 低摩擦係數路面實驗結果 41
第六章 結論與未來展望 44
參考文獻 46
符號彙編 49


[1]警政署108年針對A1類道路交通事故的車種分析,國道公路警察局,2019, Available:https://www.npa.gov.tw/NPAGip/wSite/ct?xItem=78478&ctNode=12878&mp=1.
[2]M. C. Wu, and M. C. Shih, "Simulated and experimental study of hydraulic anti-lock braking system using sliding-mode PWM control." Mechatronics 13.4 (2003): 331-351.
[3]Drakunov, Sergey, et al. "ABS control using optimum search via sliding modes." IEEE Transactions on Control Systems Technology 3.1 (1995): 79-85.
[4]J. Z. Zhang, "Cooperative control of regenerative braking and hydraulic braking of an electrified passenger car." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 226.10 (2012): 1289-1302.
[5]W. W. Wang, "High speed on-off solenoid valve with proportional control based on high frequency PWM control." Journal of Tsinghua University Science and Technology 51.5 (2011): 715-719.
[6]Choi, Seongho, and D. W. Cho. "Control of wheel slip ratio using sliding mode controller with pulse width modulation." Vehicle System Dynamics 32.4-5 (1999): 267-284.
[7]Lv, Chen, et al. "Hardware-in-the-loop simulation of pressure-difference-limiting modulation of the hydraulic brake for regenerative braking control of electric vehicles." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 228.6 (2014): 649-662.
[8]Kobayashi, Kazuyuki, Ka C. Cheok, and Kajiro Watanabe. "Estimation of absolute vehicle speed using fuzzy logic rule-based Kalman filter." Proceedings of 1995 American Control Conference-ACC'95. Vol. 5. IEEE, 1995.
[9]C. K. Song, M. Uchanski and J. K. Hedrick, “Vehicle speed estimation using accelerometer and wheel speed measurements,” SAE Tech. Pap., 2002.
[10]F. Jiang, and Z. Gao, “An Application of Nonlinear PID Control to a Class of Truck ABS Problems,” IEEE Conference on Decision and Control, Vol. 1, pp. 516-521, 2001.
[11]C. K. Song, M. Uchanski and J. K. Hedrick, “Vehicle speed estimation using accelerometer and wheel speed measurements,” SAE Tech. Pap., 2002.
[12]A. Aksjonov, K. Augsburg, V. Vodovozov, “Design and Simulation of the Robust ABS and ESP Fuzzy Logic Controller on the Complex Braking Maneuvers,” Applied Sciences , Vol. 6, ,no. 12, pp. 382, 2016.
[13]Song, Jeonghoon, Heungseob Kim, and Kwangsuck Boo. "A study on an anti-lock braking system controller and rear-wheel controller to enhance vehicle lateral stability." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 221.7 (2007): 777-787.
[14]D. Tavernini, “An Explicit Nonlinear Model Predictive ABS Controller for Electro-Hydraulic Braking Systems” in IEEE Transactions on Industrial Electronics, vol. 67, no. 5, pp. 3990-4001, May 2020.
[15]Tanelli, Mara, Alessandro Astolfi, and Sergio M. Savaresi. "Robust nonlinear output feedback control for brake by wire control systems." Automatica 44.4 (2008): 1078-1087.
[16]R. G. Wang, et al. "Multiple model adaptive control of antilock brake system via backstepping approach." 2005 International Conference on Machine Learning and Cybernetics. Vol. 1. IEEE, 2005.
[17]S. M. Savaresi, M. Tanelli and C. Cantoni, “Mixed Slip-Deceleration Control in Automotive Braking Systems,” J. Dyn. Syst. Meas. Control, vol. 129, no. 1, p. 20, 2007.
[18]S. Baek, J. Song,Y. Yun, “Application of a Sliding Mode Control to Anti-lock Brake System,” Automation and Systems, 2008.
[19]BWI group, 2019, Available: https://www.bwigroup.com/electronic-stability-control-2/.
[20]S. Drakunov, U. Ozguner and P. Dix, B. Ashrafi, “ ABS control using optimum search via sliding modes,” Control Systems Technology, vol. 3,no 8, 1995.
[21]張翔棋, “汽車ABS控制技術之硬體迴路模擬與實車路試,” 碩士, 機械與自動化工程學系, 大葉大學, 彰化, 台灣, 2010.
[22]甘明凱, “應用適應性參數估測器與路面識別於機車防鎖死煞車系統之模糊控制,” 碩士, 車輛工程系, 國立台北科技大學, 台北, 台灣, 2019.

電子全文 電子全文(網際網路公開日期:20250827)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔