(3.231.166.56) 您好!臺灣時間:2021/03/08 11:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:洪圃寬
研究生(外文):HUNG, PU-KUAN
論文名稱:引擎控制參數之節能效益分析
論文名稱(外文):Energy Saving Analysis of Engine Control Parameters
指導教授:陳柏全陳柏全引用關係
指導教授(外文):CHEN, BO-CHIUAN
口試委員:姜嘉瑞吳浴沂陳柏全
口試委員(外文):CHIANG, CHIA-JUIWU, YUH-YIHCHEN, BO-CHIUAN
口試日期:2020-07-30
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:車輛工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:65
中文關鍵詞:引擎控制參數節能技術缸內直噴引擎燃油經濟性
外文關鍵詞:engine control parametersenergy-saving technologygasoline direct injectionfuel economy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:32
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文以一具1.5升汽油缸內直噴渦輪增壓引擎為實驗目標引擎,針對特定運轉區間進行原引擎測試,接著分別調整三項不同的引擎控制參數以進行引擎制動燃油消耗率最佳化實驗,包含點火正時、可變汽門正時、渦輪洩壓閥開度,以得到各自制動燃油消耗率圖與制動污染排放量圖。接著透過MATLAB/Simulink建立整車動態模型,依據特定之行車型態,計算整車行駛所需要的燃油消耗與產生的廢氣排放,並利用各個引擎控制參數進行最佳化策略設計,本文建立一包含制動燃油消耗率及制動污染排放量的成本函數,並針對不同引擎運轉區間進行原引擎設定與三項引擎控制參數設定的成本函數計算,以成本函數值最小的設定做為該區間的局部最佳化策略,再由這些局部最佳化策略組合得到全域最佳化策略。並探討原引擎、各引擎控制參數及最佳化策略後的燃油經濟性差異,同時也分析整車的污染排放狀況。模擬結果顯示,原引擎經各項引擎控制參數調整後,燃油經濟性均有改善。透過最佳化策略調整後,燃油經濟性有更多改善量18.5%,CO及HC之排放量都有減少,而NOx排放量與原引擎相同。
A 1.5-liter gasoline direct-injection turbocharged engine is used as the target engine for experiment in this thesis. The original engine is tested for a specific operating range, and then three different engine control parameters including ignition timing, variable valve timing, and wastegate opening are optimized to minimize brake specific fuel consumption. Corresponding maps of brake specific fuel consumption and brake specific emissions can be obtained from the experiment. A vehicle dynamics model established in MATLAB/Simulink is used to calculate the fuel consumption and emissions for a specific driving cycle. An optimal strategy is designed using three different engine control parameters. A cost function is formulated to include brake specific fuel consumption and brake specific emissions in this thesis. The cost functions using the original engine and three control parameters are calculated for different engine operating regions. For a specific local region, the setting of the cost function with the minimum value is employed as the local optimal strategy. A global optimal strategy can then be obtained by combining these local optimal strategies. The fuel economy differences of the original engine, three control parameters and the optimal strategy are discussed. The emissions of these strategies are also analyzed. Simulation results show that the fuel economy of the original engine has been improved after the adjustment of three engine control parameters. The optimal strategy achieves the most significant improvement by 18.5%. CO and HC emission are reduced while maintaining the same NOx emission.
摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 vii
圖目錄 ix
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 3
1.3 研究方法及目的 7
1.4 論文架構 7
第二章 系統動態模型 8
2.1 駕駛模型 8
2.2 引擎模型 9
2.3 傳動系統模型 10
2.4 縱向動態模型 12
第三章 引擎控制參數調校 15
3.1 原引擎參數 15
3.2 點火正時參數 21
3.3 可變汽門正時參數 25
3.4 渦輪洩壓閥開度參數 28
3.5 最佳化策略 31
第四章 結果與討論 35
4.1 模型驗證 35
4.2 燃油經濟性比較與分析 41
4.3 污染排放比較與分析 50
第五章 結論與未來展望 57
附錄A 系統模擬參數 59
參考文獻 60
符號彙整 63


1.https://www.greenpeace.org/taiwan/update/9382/ 綠色和平報導
2.ICCT. (2019). CO2 emission standards for passenger cars and light-commercial vehicles in the European Union. Washington, DC: The International Council on Clean Transportation. Retrieved from https://theicct.org/publications/ldv-co2-stds-eu-2030-update-jan2019
3.中華人民共和國國務院,節能與新能源汽車產業規劃(2012-2020年)。
4.https://law.moj.gov.tw/LawClass/LawParaDeatil.aspx?pcode=O0020001&bp=4
5.André Kulzer, Jean-Pierre Hathout, Christina Sauer, Roland Karrelmeyer, Wolfgang Fischer and Ansgar Christ "Multi-Mode Combustion Strategies with CAI for a GDI Engine" SAE Paper No.2007-01-0214, 2007.
6.T. Yamada, S. Adachi, K. Nakata, T. Kurauchi, and I. Takagi, “Economy with Superior Thermal Efficient Combustion(ESTEC)”, SAE Technical Paper, No.2014-01-1192.
7.Hubert Friedl, Marko Certic, Alois Fuerhapter, Paul Kapus, Karl Koeck and Matthias Neubauer, "Technology Features and Development Methods for Spark Ignited Powertrain to Meet 2020 CO2 Emission Targets" SAE Paper No. 2013-36-0438, 2013.
8.殷荐致,應用阿特金森循環系統於缸內直噴渦輪增壓引擎之節能研究,碩士論文,國立臺北科技大學車輛工程系所,臺北,2019。
9.徐詠富,運用CFD軟體設計汽油缸內直噴式引擎層狀燃燒系統,碩士論文,國立臺北科技大學車輛工程系所,臺北,2016。
10.Simona Silvia Merola, Adrian Irimescu, Gerardo Valentino, and Cinzia Tornatore, “Experimental Evaluation of an Advanced Ignition System for GDI Engines”, SAE Technical Paper, No.2015-24-2520, 2015.
11.趙繼生,汽油缸內直噴渦輪增壓引擎之點火正時研究,碩士論文,國立臺北科技大學車輛研究所,臺北,2019年。
12.http://pressroom.toyota.com/article_display.cfm?article_id=2722 TOYOTA公司網站
13.OKUI Shigeo, KISHI Tsutomu, ISHIKAWA Naohiro, HANADA Kohei: Development of 3-stage i-VTEC VCM Engine for CIVIC Hybrid, HONDA R&D Technical Review, Vol.18, No.2, pp 44-51.
14.Ahmad, T. and Theobald, M., A., “A survey of variable valve actuation technology”, SAE Technical Paper, No. 891674, 1989.
15.Hannibal, W., Flierl, R., Stiegler, L. and Meyer, R., “Overview of Current Continuously Variable Valve Lift Systems for Four-Stoke Spark-Ignition Engines and the Criteria for Their Design Ratings”, SAE Technical Paper No. 2004-01-1263, 2004.
16.Flierl, R. and Fluting, M., “The Third Generation of Valvetrains—New Fully Variable Valvetrains for Throttle-Free Load Control”, SAE Technical Paper No. 2000-01-1227, 2000.
17.Nakamura, M., Hara, S., Yamada, Y., Takeda, K., Okamoto, N. and Hibi, T. “A Continuous Variable Valve Event and Lift Control Device (VEL) for Automotive Engines”, SAE Technical Paper No. 2001-01-0244, 2001.
18.Nishizawa, K., Mitsuishi, S., Mori, K. and Yamamoto, S., “Development of Second Generation of Gasline PZEV Technology”, SAE Technical Paper No. 2001-01-1310, 2001.
19.Dresner, T. and Barkan, P., “A review of variable valve timing benefits and modes of operation”, SAE Technical Paper No. 891676, 1989.
20.陳彥廷,可變汽門正時應用於汽油缸內直噴渦輪增壓引擎之阿特金森循環研究,碩士論文,國立臺北科技大學車輛研究所,臺北,2019年。
21.Thomas Johansson, Bengt Johansson and Per Tunestål, “HCCI Operating Range in a Turbocharged Multi Cylinder Engine with VVT and Spray-Guided DI”, SAE Technical Paper 2009-01-0494.
22.Qingqing Chen., Jimin Ni, Shi, X., Qiwei Wang, Qi Chen, and Si Liu, "Research on Effect of Wastegate Diameter on Turbocharged Gasoline Engine Performance," SAE Technical Paper NO. 2016-01-1028.
23.劉治豐,汽油缸內直噴渦輪增壓引擎之渦輪匹配分析,碩士論文,國立臺北科技大學車輛研究所,臺北,2019年。
24.林煌閔,四缸渦輪汽油引擎模型建立與驗證,碩士論文,國立臺北科技大學車輛研究所,臺北,2016年。
25.Ricardo, Shoreham Technical Centre (Head Office), Shoreham-by-Sea, UK, WAVE., Retrieved from https://software.ricardo.com/products/wave
26.Deppenkemper, K., Özyalcin, C., Ehrly, M., Schoenen, M. et al., “1D Engine Simulation Approach for Optimizing Engine and Exhaust Aftertreatment Thermal Management for Passenger Car Diesel Engines by Means of Variable Valve Train (VVT) Applications,” SAE Technical Paper 2018-01-0163.
27.Leek, A.E.V. and Eriksson, L., “Turbocharger Impact on Diesel Electric Powertrain Performance,” SAE Technical Paper 2018-01-0965.
28.李治宏,增程式電動車之適應性能量管理控制與設計,碩士論文,國立臺北科技大學車輛工程系所,臺北,2012。
29.D. Thomas, Gillespie, “Fundamentals of Vehicle Dynamics,” SAE, 1992.
30.邱信傑,應用燃燒分析於汽油缸內直噴渦輪增壓引擎之節能研究,碩士論文,國立臺北科技大學車輛工程系所,臺北,2018。
31.經濟部能源局108年測試合格銷售車型之車輛油耗指南 https://www.moeaboe.gov.tw/ECW/populace/content/wfrmStatistics.aspx?type=5&menu_id=1303
32.財團法人車輛研究測試中心101年下半年度車輛法規檢測技術交流會-車輛污染油耗法規檢測流程與送測注意事項說明https://www.artc.org.tw/chinese/06_news/01_02detail.aspx?pid=189
33.J. B. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill Book Company, 1988.

電子全文 電子全文(網際網路公開日期:20250827)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔