(3.238.7.202) 您好!臺灣時間:2021/02/25 10:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃上恒
研究生(外文):HUANG, SHANG-HENG
論文名稱:NIPAm-co-HEMA與HDI之後交聯反應及其耐洗性質研究
論文名稱(外文):A Thermo-Responsive Random Copolymer of Poly(NIPAm-co-HEMA) for Smart Textile Applications
指導教授:芮祥鵬芮祥鵬引用關係
指導教授(外文):RWEI, SYANG-PENG
口試委員:戴子安魏騰芳芮祥鵬
口試委員(外文):DAI, ZI-ANWEI, TENG-FANGRWEI, SYANG-PENG
口試日期:2020-07-09
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:分子科學與工程系有機高分子碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:64
中文關鍵詞:溫度敏感型高分子自由基聚合法聚異丙基丙烯醯胺耐洗型溫敏智慧織物
外文關鍵詞:free radical polymerizationsmart textilethermo-responsivePNIPAmLCST
相關次數:
  • 被引用被引用:0
  • 點閱點閱:24
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要利用異氰酸酯(Isocyanate)進行交聯反應產生不可逆交聯鍵。由於Diels-Alder自我修復基當交聯劑太貴,使用改用價格較便宜的HEMA與NIPAm進行聚合再利用HDI作為交聯劑,我們將欲改質的織物浸泡於反應溶液中並升溫至反應溫度,高分子就能在織物上產生交聯鍵,藉此交聯鍵牢固環套在織物纖維上達到表面改質的效果,便不會輕易從纖維脫落,且附著量大,同時也能並存雙烯加成反應的高附著率及接枝法的耐洗性佳兩優點。
前驅物P (NIPAm-co-HEMA)的合成會以FRP的做法製備,藉由不同比例與結構之共聚物,調控出最符合人體表面的排汗溫度,且織物的孔洞大小開闔度適中,藉此達到能低溫時纖維孔洞收縮保暖、高溫時纖維孔洞擴張的透氣的智能型紡織品。
結果顯示,配置不同比例的反應溶液會造成交聯鍵強度的變化,與織物的耐洗性有極大關聯。我們找出了能改質於織物中,同時具有耐洗性佳及保有原本PNIPAm溫度敏感之優點,透過掃描式電子顯微鏡(SEM)及孔徑分析儀(PMI)證明PNIPAm的溫敏性對於織物表面孔洞變化的功能;未來能利用此技術在更多不同功能性高分子上,達到多種類的智慧紡織材料。

A thermo-responsive random copolymer has fabricated and applied in Nylon fabrics for smart textile applications. The copolymer of poly(N-isopropylacrylamide-co- 2-Hydroxyethyl methacrylate) (PNH) was synthesized by N-isopropylacrylamide (NIPAm) and 2-Hydroxyethyl methacrylate (HEMA) through free radical copolymerization method via 2,2’-azobis(2-methylpropionitrile) (AIBN) as an initiator. The characterizations of PNH were investigated via 1H nuclear magnetic resonance (NMR), fourier¬transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). The fabrics were dipped in a PNH solution that was mixed with Hexamethylene diisocyanate (HDI) to form a cross link bonded cross-linked fabric.
Furthermore, fabrics have an excellent washing fastness of 90%, and the pore sizes of the fabrics can be controlled by the lower critical solution temperature (LCST) effect of P (NIPAm-co-HEMA) which was investigated via a scanning electron microscope (SEM) and a pore size analyzer (PSA).

摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章、緒論 1
1.1前言 1
1.2研究動機 2
第二章、文獻回顧 3
2.1 智能型高分子材料(smart polymer) 3
2.2 智慧型高分子 7
2.3 N-異丙基丙烯醯胺(N-isopropylacrylamide)介紹 13
2.4 自由基聚合(free radical polymerization,FRP) 14
2.5 高分子聚合物[38] 17
2.5.1 聚合物種類 17
2.5.2共聚類型與排列 18
2.6 poly(NIPAm-co-HEMA) 20
2.6.1 P (NIPAm-co-HEMA)的應用 20
2.6.2 P (NIPAm-co-HEMA)的交聯 20
2.7 異氰酸酯 22
2.8 異氰酸酯的化學反應 23
第三章、實驗 24
3.1實驗藥品 24
3.2實驗儀器與測量設備 26
3.2.1 核磁共振儀 27
3.2.2 FT-IR 傅立葉轉換顯微紅外光譜儀 28
3.2.3 凝膠透析層析儀 29
3.2.4 雷射光穿透度儀 30
3.2.5 毛管流動孔隙結構儀 31
3.2.6 自動接觸角分析儀 32
3.3 藥品前處理 33
3.3.1 NIPAm單體純化 33
3.3.2 AIBN純化 33
3.4 實驗流程 34
3.4.1 本研究之流程圖 34
3.5 合成 Poly(NIPAm-co-HEMA) 35
3.6 P(NIPAm-co-HEMA)共聚物特性分析 36
3.6.1 結構分析 36
3.6.2 分子量測試 36
3.6.3 最低臨界溶解溫度(LCST)測定 36
3.7薄膜的製備 37
3.8進行織物改質 38
3.9改質織物的應用 39
3.9.1 織物耐水洗性測試 39
3.9.2 掃描式電子顯微鏡(SEM) 40
3.9.3 接觸角測定 40
3.9.4 孔徑分析儀(Capillary Flow Porometer) 40
第四章、結果與討論 41
4.1 共聚物結構鑑定 41
4.1.1 1HNMR 41
4.1.2 FT-IR 43
4.1.3 最低臨界溶解溫度(LCST)測定 46
4.2 交聯薄膜性質測試 48
4.2.1 證明薄膜對水的溫敏現象 48
4.2.2 薄膜表面SEM 50
4.2.3 薄膜表面接觸角 51
4.3 改質織物應用測試 52
4.3.1 改質織物耐水洗性 52
4.3.2 改質織物表面SEM 54
4.3.3 改質織物表面接觸角 55
4.3.4 改質織物孔徑分布測試 56
第五章、結論 58
第六章、參考文獻 59


1. Kim, H. C. et al. Renewable smart materials. Smart Mater. Struct. 25, 073001 (2016).
2.李宣緯、鄭如忠,「有記憶的高分子」,科學發展, 476期,2012年,第12-15頁
3. Taylor, M. J., Tomlins, P. & Sahota, T. S. Thermoresponsive Gels. Gels 3, 4 (2017).
4. Huang, Z.-S., Shiu, J.-W., Way, T.-F. & Rwei, S.-P. A thermo-responsive random copolymer of poly(NIPAm-co-FMA) for smart textile applications. Polymer 184, 121917 (2019).
5. Gheneim, R., Perez-Berumen, C. & Gandini, A. Diels−Alder Reactions with Novel Polymeric Dienes and Dienophiles:  Synthesis of Reversibly Cross-Linked Elastomers. Macromolecules 35, 7246–7253 (2002).
6. Chiara Villa, Federico Martello, Silvia Erratico, Alessandro Tocchio, Marzia Belicchi,
Cristina Lenardi and Yvan Torrente,P(NIPAAM–co‐HEMA) thermoresponsive hydrogels an alternative approach for muscle cell sheet engineering ,Wiley Online Library,2017; 11: 187–196.
7. Torğut, G., Biryan, F. & Demirelli, K. Effect of graphite particle fillers on dielectric and conductivity properties of poly(NIPAM-co-HEMA). Bull. Mater. Sci. 42, 244 (2019).
8. Quynh, T. M., Yoneyamab, M., Maki, Y. & Dobashi, T. Poly(N-isopropylacrylamide-co-hydroxyethyl methacrylate) graft copolymers and their application as carriers for drug delivery system. J. Appl. Polym. Sci. 123, 2368–2376 (2012).
9. Li, Y. Y.; Zhang, X. Z.; Cheng, H.; Zhu, J. L.; Cheng, S. X.;Zhuo, R. X. Macromol Rapid Commun 2006, 27, 1913.
10. Fernández-d’Arlas, B., Alonso-Varona, A., Palomares, T., Corcuera, M. A. & Eceiza, A. Studies on the morphology, properties and biocompatibility of aliphatic diisocyanate-polycarbonate polyurethanes. Polym. Degrad. Stab. 122, 153–160 (2015).
11. Sonker, A. K. et al. Crosslinking of agar by diisocyanates. Carbohydr. Polym. 202, 454–460 (2018).
12. He, J., Horie, K. & Yokota, R. Characterization of polyimide gels crosslinked with hexamethylene diisocyanate. Polymer 41, 4793–4802 (2000).
13. Petrucci, Ralph H., et al. General Chemistry: Principles and Modern Applications. Upper Saddle River, NJ: Prentice Hall, 2007
14. International Union of Pure and Applied Chemistry. "hydrogen bond". Compendium of Chemical Terminology Internet edition.
15. M. K. Yoo, Y. K. Sung, Y. M. Lee, C. S. Cho. Effect of polymer complex Formation on the cloud-point of poly(N-isopropylacrylamide)(PNIPAAm) in the poly(NIPAAm-co-acrylic acid): polyelectrolyte complex between poly(acrylic acid) and poly(L-lysine). Polymer 39(16),3703-3708.1998.
16. Griffiths, David. Introduction to Electrodynamics. Upper Saddle River, NJ: Prentice Hall. 1999.
17. 連翊吟,溫度/pH敏感型高分子:聚N-異丙基丙烯醯胺及其共聚物之相變
化行為探討,碩士論文,國立台北科技大學,2012 18. Hoogenboom, R. 2 - Temperature-responsive polymers: properties, synthesis and applications. in Smart Polymers and their Applications (eds. Aguilar, M. R. & San Román, J.) 15–44 (Woodhead Publishing, 2014). doi:10.1533/9780857097026.1.15.
19. Kuramoto, N. & Shishido, Y. Property of thermo-sensitive and redox-active poly(N-cyclopropylacrylamide-co-vinylferrocene)nand poly(N-isopropylacrylamide-co-vinylferrocene). Polymer 39, 669–673 (1998).
20. Effect of the molecular weight on the lower critical solution temperature of poly(N,N-diethylacrylamide) in aqueous solutions - Canadian Journal of Chemistry.
21. Ieong, N. S. et al. The Missing Lactam-Thermoresponsive and Biocompatible Poly(N-vinylpiperidone) Polymers by Xanthate-Mediated RAFT Polymerization. Macromolecules 44, 886–893 (2011).
22. Yan, N. et al. Thermoresponsive polymers based on poly-vinylpyrrolidone : applications in nanoparticle catalysis. Chem. Commun. 46, 1631–1633 (2010).
23. Huglin, M. B. & Radwan, M. A. Unperturbed dimensions of a zwitterionic polymethacrylate. Polym. Int. 26, 97–104 (1991).
24. Reyes-Ortega, F. 3 - pH-responsive polymers: properties, synthesis and applications. in Smart Polymers and their Applications (eds. Aguilar, M. R. & San Román, J.) 45–92 (Woodhead Publishing, 2014). doi:10.1533/9780857097026.1.45.
25. Dai, S., Ravi, P. & Tam, K. C. pH-Responsive polymers: synthesis, properties and applications. Soft Matter 4, 435–449 (2008).
26. Cui, J. & Del Campo, A. 4 - Photo-responsive polymers: properties, synthesis and applications. in Smart Polymers and their Applications (eds. Aguilar, M. R. & San Román, J.) 93–133 (Woodhead Publishing, 2014). doi:10.1533/9780857097026.1.93.
27. Zhao, Y. Photocontrollable block copolymer micelles: what can we control? J. Mater. Chem. 19, 4887–4895 (2009).
28. Zrinyi, M. 5 - Magnetically responsive polymer gels and elastomers: properties, synthesis and applications. in Smart Polymers and their Applications (eds. Aguilar, M. R. & San Román, J.) 134–165 (Woodhead Publishing, 2014). doi:10.1533/9780857097026.1.134.
29. Zelzer, M. & Ulijn, R. V. 6 - Enzyme-responsive polymers: properties, synthesis and applications. in Smart Polymers and their Applications (eds. Aguilar, M. R. & San Román, J.) 166–203 (Woodhead Publishing, 2014). doi:10.1533/9780857097026.1.166.
30. Peponi, L., Navarro-Baena, I. & Kenny, J. M. 7 - Shape memory polymers: properties, synthesis and applications. in Smart Polymers and their Applications (eds. Aguilar, M. R. & San Román, J.) 204–236 (Woodhead Publishing, 2014). doi:10.1533/9780857097026.1.204.
31. Garcia, S. J. & Fischer, H. R. 9 - Self-healing polymer systems: properties, synthesis and applications. in Smart Polymers and their Applications (eds. Aguilar, M. R. & San Román, J.) 271–298 (Woodhead Publishing, 2014). doi:10.1533/9780857097026.1.271.
32. Fujishige, S., Kubota, K. & Ando, I. Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide). J. Phys. Chem. 93, 3311–3313 (1989).
33. R.Dinarvand and A.D’Emanuele,’, “The use of thermorespesponsive hydrogels for on-off release of molecules,”Journal of controlled release, vol.36, pp.2211-227,1995.
34. Li, P.; Xu, R.; Wang, W.; Li, X.; Xu, Z.; Yeung, K. W. K.; Chu, P. K., Thermosensitive poly(N-isopropylacrylamide-co-glycidyl methacrylate) microgels for controlled drug release. Colloids and Surfaces B: Biointerfaces 2013, 101 (0), 251-255.
35. Liu, Y.; Cao, X.; Luo, M.; Le, Z.; Xu, W., Self-assembled micellar nanoparticles
of a novel star copolymer for thermo and pH dual-responsive drug release. Journal of Colloid and Interface Science 2009, 329 (2), 244-252.
36. Carreira, A. S.; Gonçalves, F. A. M. M.; Mendonça, P. V.; Gil, M. H.; Coelho, J. F. J., Temperature and pH responsive polymers based on chitosan: Applications and new graft copolymerization strategies based on living radical polymerization. Carbohydrate Polymers 2010, 80 (3), 618-630.
37. B. Lisa and N. Peppas, “Dyamic and equilibrium swelling behavior of pH sensitive hydrogels containing 2-hydroxyethyl meyhacrylate, ”Biogmaterials, vol.11, 1990, pp.635-643.
38. Jenkins, A. D., Kratochvíl, P., Stepto, R. F. T. & Suter, U. W. Glossary of basic terms in polymer science (IUPAC Recommendations 1996). Pure Appl. Chem. 68, 2287–2311 (1996).
39. Quynh, T. M., Yoneyamab, M., Maki, Y. & Dobashi, T. Poly(N-isopropylacrylamide-co-hydroxyethyl methacrylate) graft copolymers and their application as carriers for drug delivery system. J. Appl. Polym. Sci. 123, 2368–2376 (2012).
40. Chaudhuri, S. & Wu, C.-M. Switchable Wettability of Poly(NIPAAm-co-HEMA-co-NMA) Coated PET Fabric for Moisture Management. Polymers 12, (2020).
41. Liu, Y., Zhang, K., Ma, J. & Vancso, G. J. Thermoresponsive Semi-IPN Hydrogel Microfibers from Continuous Fluidic Processing with High Elasticity and Fast Actuation. ACS Appl. Mater. Interfaces 9, 901–908 (2017).
42. 張智純譯,”PU製品之發展及應用”,徐氏基金會出版,1978。
43. Atkins, P. W.; Jones, L. Chemical Principles: the Quest for Insight, 1st edition; W. H.
44. Su, G., Zhou, T., Zhang, Y., Liu, X. & Zhang, A. Microdynamics mechanism of D 2 O absorption of the poly(2-hydroxyethyl methacrylate)-based contact lens hydrogel studied by two-dimensional correlation ATR-FTIR spectroscopy. Soft Matter 12, 1145–1157 (2016).
45. 高分子合成新技術,化學工業出版社,王建國編著
46. Laurenti, M., Grochowicz, M. & Cauda, V. Porous ZnO/2–Hydroxyethyl Methacrylate Eluting Coatings for Ureteral Stent Applications. Coatings 8, 376 (2018).
47. Zhang, J., Xu, X.-D., Wu, D.-Q., Zhang, X.-Z. & Zhuo, R.-X. Synthesis of thermosensitive P(NIPAAm-co-HEMA)/cellulose hydrogels via “click” chemistry. Carbohydr. Polym. 77, 583–589 (2009).
48. Lim, D.-I., Park, H.-S., Park, J.-H., Knowles, J. C. & Gong, M.-S. Application of high-strength biodegradable polyurethanes containing different ratios of biobased isomannide and poly (ϵ-caprolactone) diol. J. Bioact. Compat. Polym. 28, 274–288 (2013).
49. He, J., Horie, K. & Yokota, R. Characterization of polyimide gels crosslinked with hexamethylene diisocyanate. Polymer 41, 4793–4802 (2000).
50. Caddeo, S. et al. Collagen/Polyurethane-Coated Bioactive Glass: Early Achievements towards the Modelling of Healthy and Osteoporotic Bone. Key Engineering Materials vol. 631 184–189 /KEM.631.184 (2015).
51. Sun, X., DenHartog, E., Zhang, X. & McCord, M. Study of poly(N-isopropylacrylamide) grafted cotton fabrics initiated by atmospheric pressure plasma. Appl. Surf. Sci. 453, 182–191 (2018).
52. Jindan Wu, Yuelin Jiang, Ju He, Sufang Zhao, Guoqiang Cai1, and Jiping Wang. Textile Research Journal 2016, Vol. 86(7) 677–684.
53. Shih, Y.-J., Chang, Y., Deratani, A. & Quemener, D. “Schizophrenic” Hemocompatible Copolymers via Switchable Thermoresponsive Transition of Nonionic/Zwitterionic Block Self-Assembly in Human Blood. Biomacromolecules 13, 2849–2858 (2012).
54. Jiang, Y., Wu, Y. & Huo, Y. Thermo-responsive hydrogels with N-isopropylacrylamide/acrylamide interpenetrating networks for controlled drug release. J. Biomater. Sci. Polym. Ed. 26, 917–930 (2015).
55. Doncom, K. E. B., Willcock, H. & O’Reilly, R. K. The direct synthesis of sulfobetaine-containing amphiphilic block copolymers and their self-assembly behavior. Eur. Polym. J. 87, 497–507 (2017).
56. Lee, W.-F. & Chiu, R.-J. Thermoreversible Hydrogels XVI: Synthesis and Swelling Behaviors of [N-Isopropylacrylamide–co-trimethyl acrylamidopropyl ammonium iodide-co-3-dimethyl (methacryloxyethyl) ammonium propane sulfonate] Copolymeric Hydrogels in Aqueous Salt Solution. 9.

電子全文 電子全文(網際網路公開日期:20250729)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔