(44.192.10.166) 您好!臺灣時間:2021/03/05 09:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周家漢
研究生(外文):CHOU, JIA-HAN
論文名稱:開發新穎性聚醯胺彈性體系統及其特性之研究
論文名稱(外文):Development and Characterization of a Novel Polyamide Elastomer System
指導教授:李宜桓
指導教授(外文):LEE, YI-HUAN
口試委員:芮祥鵬魏騰芳王賢達李薇芳
口試委員(外文):RWEI, SYANG-PENGWEI, TENG-FANGWANG, HSIN-TALEE, WEI-FANG
口試日期:2020-07-13
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:分子科學與工程系有機高分子碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:78
中文關鍵詞:聚醯胺尼龍彈性體熔融聚合低熔點
外文關鍵詞:PolyamideNylonMelt polymerizationElastomerComposites
相關次數:
  • 被引用被引用:0
  • 點閱點閱:12
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究開發新穎性聚醯胺彈性體的系統,此系統是以聚醯胺6(PA6)作為硬鏈段與二聚體二胺作為軟鏈段組成,並透過軟硬鏈段比例的調整進行熔融縮聚。在我們成功的合成出高分子材料後,進行了各種儀器的分析。實驗量測使用示掃描熱量分析儀(DSC)、熱重分析儀(TGA)、動態黏彈性分析儀(DMA)和流變儀,對合成的彈性體材料其熱性質及機械性質進行分析的步驟。之後,本研究更進一步透過超臨界CO2流體發泡技術,將此系統的材料作成微孔發泡材料,並透過桌上型掃描式電子顯微鏡(SEM)進行型態的觀察以及泡孔結構的分析。我們可以觀察到,本系統材料經發泡後的泡孔為閉孔結構,且可以透過材料配方的調整,以及發泡時的條件參數來有效地調節孔徑的大小和膨脹倍率。由實驗結果來說,此材料具有良好的可加工性有利於後續的處理及塑形,我們相信這種新穎性的聚醯胺彈性體系統在商業上會有廣泛的應用,深具發展的潛力。

In this study, we developed a novel polyamide elastomer system consisting of polyamide 6 (PA6) as a hard segment and dimer diamine as a soft segment. After successful synthesis procedures, various analytical technologies such as differential scanning calorimeter (DSC), thermogravimetric analyzer (TGA), dynamic mechanical analyzer (DMA), and rheological measurements were used to characterize the thermal and mechanical properties of the synthesized elastomer samples. Afterward, this material system was further used to fabricate microcellular foams through a carbon dioxide supercritical fluid foaming process. After morphological investigations using scanning electron microscope (SEM) and cell structure analyses, we could observe that the fabricated foams showed a closed cell structure, and the pore size and expansion ratio could be effectively regulated by changing the material formula and foaming process parameters. We believe that this novel polyamide elastomer system shows great potential for a wide range of commercial applications.
摘要 i
ABSTRACT ii
誌謝 iv
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 4
2.1 聚醯胺 4
2.1.1聚醯胺介紹 4
2.1.2聚醯胺命名 5
2.1.3聚醯胺特徵 5
2.2 低熔點聚醯胺 6
2.2.1低熔點聚醯胺介紹 6
2.2.2熱塑性彈性體 6
2.2.3聚醯胺彈性體介紹 7
2.2.4 Pebax®之介紹 8
2.3 高分子發泡材料 9
2.3.1發泡的原理 9
2.3.2超臨界CO2發泡與其它應用 10
2.3.3聚醯胺發泡 12
2.3.4發泡材料的發展及應用 13
2.4 高分子聚合物的結晶行為 14
2.5 聚醯胺高分子材料的應用 15
第三章 實驗 16
3.1 實驗藥品 16
3.1.1 高分子聚合藥品 16
3.1.2實驗溶劑 19
3.1.3市售低熔點聚醯胺材料 21
3.2實驗器材及設備 22
3.3實驗結果分析儀器 29
3.4實驗方法 36
3.4.1 LPAs之縮合聚合 36
3.4.3 LPAs之超臨界CO2發泡 37
3.5低熔點聚醯胺共聚物及對照組之分析條件及測量方法 38
3.5.1 傅立葉轉換紅外線光譜儀 38
3.5.2 廣角X-ray散射 38
3.5.3熱重分析儀 39
3.5.4差示掃描熱分析儀 39
3.5.5 動態黏彈性分析儀 40
3.5.6 相對黏度分析 40
3.5.7桌上型掃描式電子顯微鏡 40
3.5.8流變儀 41
第四章 結果與討論 42
4.1 低熔點聚醯胺共聚物LPAs及對照組的結構分析 42
4.1.1低熔點尼龍之比例 42
4.1.2 FTIR-官能基鑑定 42
4.1.3NMR-結構分析 45
4.1.4 WAXS-結構分析 46
4.1.5 DSC-熱性質分析 48
4.1.6 TGA-熱穩定性分析 51
4.1.7 DMA-玻璃轉移溫度測量 54
4.1.8 RV-相對黏度分析 56
4.1.9流變分析 57
4.2 低熔點聚醯胺共聚物LPAs發泡材料的結構分析 60
4.2.1超臨界CO2微孔發泡膨脹倍率及巨觀結構 60
4.2.2超臨界CO2微孔發泡影響因素 67
第五章 結論 70
參考文獻 71




1.Carothers. W.H, U.S. Patent 2,071250 Linear Condensation Polymer, 1937.
2.Y. Schneider, N. A. Lynd, E. J. Kramer and G. C. Bazan. Novel Elastomers Prepared by Grafting n-Butyl Acrylate from Polyethylene Macroinitiator Copolymers, Macromolecules, 2009, 42, 8763–8768.
3.K. S. O’Connor, A. Watts, T. Vaidya, A. M. LaPointe, M. A. Hillmyer and G. W. Coates. Controlled Chain Walking for the Synthesis of Thermoplastic Polyolefin Elastomers: Synthesis, Structure, and Properties, Macromolecules, 2016, 49, 6743–6751.
4.G. P. Baeza, A. Sharma, A. Louhichi, L. Imperiali, W. P. J. Appel, C. F. C. Fitie, M. P. Lettinga, E. Van Ruymbeke and D. Vlassopoulos. Multiscale organization of thermoplastic elastomers with varying content of hard segments, Polymer, 2016, 107, 89–101.
5.R. Ukielski. New multiblock terpoly(ester–ether–amide) thermoplastic elastomers with various chemical composition of ester block, Polymer, 2000, 41, 1893–1904.
6.Y. Nagai, T. Ogawa, Y. Nishimoto and F. Ohishi. Analysis of weathering of a thermoplastic polyester elastomer II. Factors affecting weathering of a polyether–polyester elastomer, Polym. Degrad. Stab., 1999, 65, 217–224.
7.M. Peyravi, A. A. Babaluo, M. A. Ardestani, M. K. R. Aghjeh, S. R. Pishghadam, P. Hadi, Study on the synthesis of poly(ether‐block‐amide) copolymer based on nylon6 and poly(ethylene oxide) with various block lengths, Appl. Polym. Sci., 2010, 118, 623-1243.
8.G. Rabani, G. M. Rosair, A. Kraft. Low‐temperature route to thermoplastic polyamide elastomers, Polym. Sci. Poly. Chem., 2004, 42, 1293-1536.
9.J. F. Feller, Y. Grohens. Evolution of electrical properties of some conductive polymer composite textiles with organic solvent vapours diffusion, Sensor and Actuators. B: Chem. 2004, 97, 231-242.
10.Y. Lei, C. Li, X. Fu, J. Lei, C. Zhou. Synthesis and characterization of a high performance polyamide-6 elastomer based on poly(ether-block-amide) multiblock copolymer by reactive processing in torque rheometer, Adv. Polym. Tech., 2017, 37, 1549-2380.
11.S. Xu and L. Ye. Synthesis and properties of monomer cast nylon-6-b-polyether amine copolymers with different structures, RSC Adv., 2015, 5, 32460–32468.
12.X. Deng, A. Liu, J. Wang, J. Yang and D. Li. Synthesis and characterization of three-arm polyamide 6-polyurethane block copolymer by monomer casting process, Mater. Des., 2010, 31, 2776–2783.
13.S. Xu and L. Ye. Preparation and properties of monomer casting nylon‐6/PEO blend prepared via in situ polymerization, Polym. Eng. Sci., 2015, 55, 589–597.
14.H. Bouchekif, D. Tunc, C. Le Coz, A. Deffieux, P. Desbois and S. Carlotti. Controlled synthesis of crosslinked polyamide 6 using a bis-monomer derived from cyclized lysine, Polymer, 2014, 55, 5991–5997.
15.A. Saiani, W. A. Daunch, H. Verbeke, J. W. Leenslag and J. S. Higgins. Origin of multiple melting endotherms in a high hard block content polyurethane. 1. Thermodynamic investigation, Macromolecules, 2001, 34, 9059–9068.
16.X. Cui, Z. Liu, D. Yan. Synthesis and characterization of novel even–odd nylons based on undecanedioic acid, Eur. Polym. J., 2004, 40, 1111-1118.
17.Y. Song, H. Yamamoto and N. Nemoto. Segmental Orientations and Deformation Mechanism of Poly(ether-block-amide) Films, Macromolecules 2004, 37, 6219-6226.
18.P. Zhu, X. Dong, Y. Cao, L. Wang, X. Liu, Z. Wang, D. Wang. The Brill transition in polyether-b-amide segmented copolymers and composition dependence, Eur. Polym. J., 2017, 93, 334-346.
19.M.R. Barzegari, N. Hossieny, D. Jahani, C.B. Park. Characterization of hard-segment crystalline phase of poly(etherblock-amide) (PEBAX®) thermoplastic elastomers in the presence of supercritical CO2 and its impact on foams, Polymer, 2017, 114, 15-27.
20.J.P. Sheth, J. Xu, G.L. Wilkes. Solid state structure–property behavior of semicrystalline poly (ether-block-amide) PEBAX® thermoplastic elastomers, Polymer, 2003, 44, 743-756.
21.I. Tsivintzelis, A.G. Angelopoulou, C. Panayiotou. Foaming of polymers with supercritical CO2: an experimental and theoretical study, Polymer, 2007, 48, 5928-5939.
22.E. Reverchon, S. Cardea. Production of controlled polymeric foams by supercritical CO2, J. Supercrit. Fluids, 2007, 40, 144-152.
23.M. Xu, H. Yan, Q. He, C. Wan, T. Liu, L. Zhao, C. B. Park. Chain extension of polyamide 6 using multifunctional chain extenders and reactive extrusion for melt foaming, Eur. Polym. J., 2017, 96, 210-220.
24.T. Mori, H. Hayashi, M. Okamoto, S. Yamasaki, H. Hayami. Foam processing of polyethylene ionomers with supercritical CO2, Composites Part A, 2009, 40, 1708-1716.
25.J. A. R. Ruiz, M. Pedros, J. M. Tallon, M. Dumon. Micro and nano cellular amorphous polymers (PMMA, PS) in supercritical CO2 assisted by nanostructured CO2-philic block copolymers – One step foaming process, J. Supercrit. Fluids, 2011, 58, 168-176.
26.C. Forest, P. Chaumont, P. Cassagnau, B. Swoboda, P. Sonntag. Polymer nano-foams for insulating applications prepared from CO2 foaming, Prog. Polym. Sci., 2015, 41, 122-145.
27.X Han, J Shen, H Huang, D. L. Tomasko, L. J. Lee. CO2 foaming based on polystyrene/poly(methyl methacrylate) blend and nanoclay, Polym. Eng. Sci., 2007, 77-199.
28.L. Wang, Y. K. Wu, F. F. Ai, J. Fan, Z. P. Xia, Y. Liu. Hierarchical Porous Polyamide 6 by Solution Foaming: Synthesis, Characterization and Properties, Polymers, 2018, 10, 1310.
29.M. Sauceau, J. Fages, A. Common, C. Nikitine, E. Rodier. New challenges in polymer foaming: A review of extrusion processes assisted by supercritical carbon dioxide, Prog. Polym. Sci., 2011, 36, 749-766.
30.S. Todros, A. N. Natali, M. Piga, G. A. Giffin, G. Pace and V. Di Noto. Interplay between chemical structure and ageing on mechanical and electric relaxations in poly(ether-block-amide)s, Polym. Degard. Stab., 2013, 98, 1126–1137.
31.F. M. Preda, A. Alegria, A. Bocahut, L. A. Fillott, D. R. Long and P. Sotta. Investigation of Water Diffusion Mechanisms in Relation to Polymer Relaxations in Polyamides, Macromolecules, 2015, 48, 5730–5741.
32.F. L. Beyer, S. P. Gido, C. Buschl, H. Iatrou, D. Uhrig, J. W. Mays, M. Y. Chang, B. A. Garetz, N. P. Balsara, N. B. Tan and N. Hadjichristidis. Graft Copolymers with Regularly Spaced, Tetrafunctional Branch Points:  Morphology and Grain Structure, Macromolecules, 2000, 33, 2039–2048.
33.J. Pepin, V. Miri and J.-M. Lefebvre. New Insights into the Brill Transition in Polyamide 11 and Polyamide 6, Macromolecules, 2016, 49, 564–573.
34.G. Wang and B. Xue. Synthesis and characterization of poly(ether‐block‐amide) and application as permanent antistatic agent, J. Appl. Polym. Sci., 2010, 118, 2448– 2453.
35.C. Lu, R. Ye, Y. Yang, X. Ren, X. Cai. Chemical modification of polyamide 6 by chain extension with terephthaloyl-biscaprolactam, J. Macromol. Sci., Phys., 2010, 50, 350–362.
36.A. Wong, Y. Guo, C.B. Park. Fundamental mechanisms of cell nucleation in polypropylene foaming with supercritical carbon dioxide—Effects of extensional stresses and crystals, J. Supercrit. Fluids, 2013, 79, 142-151.
37.S.N. Leung, A. Wong, L.C. Wang, C.B. Park. Mechanism of extensional stress-induced cell formation in polymeric foaming processes with the presence of nucleating agents, J. Supercrit. Fluids, 2012, 63, 187-198.
38.M. Buccella, A. Dorigato, E. Pasqualini, M. Caldara, L. Fambri. Chain extension behavior and thermo-mechanical properties of polyamide 6 chemically modified with 1, 1'-carbonyl-bis-caprolactam, Polym. Eng. Sci., 2014, 54, 158-165.
39.A.R. Erdogan, I. Kaygusuz, C. Kaynak. Influences of aminosilanization of halloysite nanotubes on the mechanical properties of polyamide-6 nanocomposites, Polym. Compos., 2014, 35, 1350-1361.
40.J. Reignier, J. Tatibouët, R. Gendron. Effect of dissolved carbon dioxide on the glass transition and crystallization of poly (lactic acid) as probed by ultrasonic measurements, J. Appl. Polym. Sci., 2009, 112, 1345-1355.
41.M. Nofar, W. Zhu, C.B. Park, J. Randall. Crystallization kinetics of linear and long-chain-branched polylactide, Ind. Eng. Chem. Res, 2011, 50, 13789-13798.
42.A. Douhi, A. Fradet. Study of bulk chain coupling reactions. III. Reaction between bisoxazolines or bisoxazlines and carboxy-terminated oligomers, J. Poly. Sci. Part A Poly. Chem., 1995, 33, 691-699.
43.Y. Shieh, K. Liu. Solubility of CO2 in glassy PMMA and PS over a wide pressure range: the effect of carbonyl groups, Journal of Polymer Research, 2002, 9, 107-113.
44.P. Gerard, N.P. Boupat, T. Fine, L. Gervat, J.-P. Pascault. Controlled architecture polymers at arkema: synthesis, morphology and properties of all-acrylic block copolymers, Macromol. Symp., 2007, 256, 55-64.
45.L. Zirkel, M. Jakob, H. Münstedt. Foaming of thin films of a fluorinated ethylene propylene copolymer using supercritical carbon dioxide, J. Supercrit. Fluids, 2009, 49, 103-110.
46.A. Kelyn, A. Arora, A.J. Lesser, T.J. McCarthy. Compressive behaviour of microcellular poly(styrene)foams processed in supercritical carbon dioxide, Polym. Eng. Sci., 1998, 38, 707-715.
47.W. Zhai, H. Wang, J. Yu, J. Dong, J. He. Foaming behaviour of polypropylene/poly(styrene) blends enhanced by improved interfacial compatibility, J. Polym. Sci., Part B: Polym.Phys., 2008, 46, 1641-1651.
48.H. Park, R.B. Thompson, N. Lanson, C. Tzoganakis, C.B. Park, P. Chen. Surface tension measurement of poly(styrene) melts in supercritical carbon dioxide, J. Phys. Chem. B, 2007, 111, 3859-3868.
49.R. Yuan, S. Fan, D. Wu, X. Wang, J. Yu, L. Chen, F. Li. Facile synthesis of polyamide 6 (PA6)-based thermoplastic elastomers with a well-defined microphase separation structure by melt polymerization, Polym. Chem., 2018, 9, 1327-1336.
50.D. Klempner, V.S.c., R. M. Aseeva, Handbook of Polymeric Foams and Foam Technology. 2004.
51.L. Chen, D. Rende, L. S. Schadler, R. Ozisik. Polymer nanocomposite foams. J. Mater. Chem. A, 2013, 1, 3837-3850.
52.L. J. Lee, C.Z., X. Cao, X. Han, J. Shen, and G. Xu, Polymer Nanocomposite Foams. Compos Sci Technol, 2005. 65(15-16), pp. 2344-2363.
53.S. Yilmaz, O. Gul, T. Yilmaz. Effect of chain extender and terpolymers on tensile and fracture properties of polyamide 6, Polymer, 2015, 65, 63-71.
54.S. C. Ozmen, G. Ozkoc, E. Serhatli. Thermal, mechanical and physical properties of chain extended recycled polyamide 6 via reactive extrusion: Effect of chain extender types, Polymer Degradation and Stability, 2019, 162, 76-84.
55.C.P. Park, B.A. Malone, Extruded closed-cell polypropylene foam: U.S. Patent 5527573, 1996.
56.S.M. Aharoni, W.B. Hammond, J.S. Szobota, D. Masilamani, Reactions in the presence of organic phosphites, I: High temperature amidation in the absence of solvents, J. Poly. Sci. Poly. Chem. Ed, 1984, ,22, 2567–2577.
57.M. Acevedo, A. Fradet, Study of bulk chain coupling reactions. II. Reaction between bisoxazolones and amine-terminated polyether: synthesis of polyether-blockpolyamides, J. Poly. Sci. Part A Poly. Chem, 1993, 31, 1579–1588.
58.H. Inata, S. Matsumura, Chain extenders for polyesters. I. Addition-type chain extenders reactive with carboxyl end groups of polyesters, J. Appl. Polym. Sci, 2010, 30, 3325–3337.
59.H. Inata, S. Matsumura, Chain extenders for polyesters. IV. Properties of the polyesters chain-extended by 2,2′-bis(2-oxazoline), J. Appl. Polym. Sci, 2010, 33, 3069–3079.
60.I. Hiroo, M. Shunichi, Chain extenders for polyesters. VI. Properties of the polyesters chain-extended by 2,2′-bis(4H–3,1-benzoxazin-4-one), J. Appl. Polym. Sci, 2010, 34, 2769–2776.
61.A. Douhi, A. Fradet, Study of bulk chain coupling reactions. III. Reaction between bisoxazolines or bisoxazlines and carboxy-terminated oligomers, J. Poly. Sci. Part A Poly. Chem, 1995, 33, 691–699.
62.Z. Qian, X. Chen, J. Xu, B. Guo, Chain extension of PA1010 by reactive extrusion by diepoxide 711 and diepoxide TDE85 as chain extenders, J. Appl. Polym. Sci, 2010, 94, 2347–2355.
63.S. K. Yeh, W. H. Liu, Y. M. Huang, Carbon Dioxide-Blown Expanded Polyamide Bead Foams with Bimodal Cell Structure. Ind. Eng. Chem. Res, 2019, 58, 2958−2969.
64.H. Zhang, Scale-Up of Extrusion Foaming Process for Manufacture of Polystyrene Foams Using Carbon Dioxide, master’s thesis, 8, University of Toronto, 2010.
65.F. L. Jin, M. Zhao, M. Park, S. J. Park, Recent Trends of Foaming in Polymer Processing: A Review, Polymers, 2019, 11, 953

電子全文 電子全文(網際網路公開日期:20250817)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔