(3.235.108.188) 您好!臺灣時間:2021/02/27 23:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉芳誠
研究生(外文):LIU, FANG-CHENG
論文名稱:氟代烷基硼氧化鎂合成及其在鎂離子電池電解質之應用
論文名稱(外文):Synthesis of Fluoroalkyl Boron Magnesium Oxide for Magnesium Battery electrolyte
指導教授:張淑美張淑美引用關係
指導教授(外文):CHANG, SHU-MEI
口試委員:余琬琴呂美霞張淑美
口試委員(外文):YU, WAN-CHINLU, MEI-HSIACHANG, SHU-MEI
口試日期:2020-07-16
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:分子科學與工程系有機高分子碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:54
中文關鍵詞:鎂電池電解質電解液
外文關鍵詞:Magnesium batteryLithium-ion batteryElectrolyte
相關次數:
  • 被引用被引用:0
  • 點閱點閱:27
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前商用電池的研究方向從鋰離子電池轉往其他離子電池,其因鎂金屬成本比鋰金屬低,而鎂、鋰、鈉離子理論容量分別為(3882、2044、1128mAh/cm3)在三種離子理論容量相較之下,鎂離子因理論單位體積電容量較高,鎂離子電池有機會取代鋰離子電池。
本研究係以乙酸乙酯(EA)及乙二醇二甲醚(DME)兩種溶劑進行氟代烷基硼氧化鎂鹽的合成,將其合成物於核磁共振(NMR)鑑定。氟代烷基硼氧化鎂鹽分別搭配乙酸乙酯(EA)、二乙二醇二甲醚(DEG)、三乙二醇二甲醚(TEG)、四乙二醇二甲醚(TTG)以及乙二醇二甲醚(DME)五種有機溶劑以實驗設計法配置電解液組裝成鈕扣型電池並進行電性測試與分析,含循環伏安法(CV)與線性掃描伏安法(LSV)以及充放電測試(Galvanosstatic charge/discharge)。

The current research direction of commercial batteries is shifting from lithium ion batteries to other ion batteries. The cost of magnesium metal is lower than that of lithium metal, and the theoretical capacities of magnesium, lithium, and sodium ions are (3882, 2044, 1128mAh /cm3). In comparison with capacity, magnesium ions have a higher capacity per unit volume, so magnesium-ion batteries have the opportunity to replace lithium-ion batteries.
In this research with ethyl acetate (EA) and ethylene glycol dimethyl ether (DME) synthesis of two solvents for boron fluoroalkyl magnesium salts, which composition is identified in nuclear magnetic resonance (NMR). Fluorinated alkyl boron oxide magnesium salt are paired with ethyl acetate (EA), diethylene glycol dimethyl ether (DEG), triethylene glycol dimethyl ether (TEG), tetraethylene glycol dimethyl ether (TTG) and Five kinds of organic solvents of ethylene glycol dimethyl ether (DME) are equipped with electrolyte by experimental design method to assemble button batteries and conduct electrical test and analysis, including cyclic voltammetry (CV) and linear scanning voltammetry (LSV) And the charge and discharge test (Galvanosstatic charge/discharge).

摘 要 i
ABSTRACT ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
第二章 文獻回顧 5
2.1 儲能型電池介紹 5
2.1.1 鋰離子電池 7
2.1.2 鎂離子電池 8
2.2 鎂離子電池工作原理 11
2.3 電解液 12
2.3.1 研究用於鎂離子電池的液體電解質的策略 15
2.4 正極材料 16
2.5 負極材料 18
2.6 電化學測試 20
2.6.1 循環伏安法 21
2.6.2 線性掃描伏安法 22
2.6.3 充電放電測試法 23
第三章 實驗方法與流程 24
3.1 實驗藥品及材料 24
3.2 實驗儀器 28
3.2.1 核磁共振光譜儀 (NMR) 28
3.2.2 熱重量分析儀 (TGA) 29
3.2.3 循環伏安法(CV)含線性掃描伏安法(LSV) 30
3.3 實驗流程 31
3.4 實驗步驟 32
3.3.1 鎂離子電池電解質製備 32
3.3.2 鎂離子電池電解液配製 33
第四章 結果與討論 34
4.1 鎂離子電解質之結構鑑定 34
4.1.1 合成溶劑為 DME 之NMR鑑定 34
4.1.2 合成溶劑為 EA之NMR鑑定 35
4.2 熱重量分析儀(TGA) 36
4.2.1 合成溶劑為 DME 熱性質分析 36
4.2.2 合成溶劑為 EA 熱性質分析 37
4.3 循環伏安法(CV)和線性掃描伏安法(LSV) 38
4.3.1 測試在不同溶劑做為電解液在Sn/Mg半電池下的CV圖 38
4.3.2 測試在不同溶劑做為電解液在Sn/Mg 半電池下的LSV圖 39
4.3.3 在不同溶劑下合成電解質以Sn/Mg半電池測試CV圖 40
4.3.4 將Mg[B(hfip)4]2配置成電解液額外補充其他鎂鹽及添加劑CV圖 42
4.4 充電放電測試法 45
第五章 結論 48
參考文獻 49

[1]X.Huang, Z.Zeng, andH.Zhang, “Metal dichalcogenide nanosheets: Preparation, properties and applications,” Chem. Soc. Rev., vol. 42, no. 5, pp. 1934–1946, 2013.
[2]X.Wang, Q.Weng, andD.Golberg, “Hybrid two-dimensional materials in rechargeable battery applications and their microscopic mechanisms,” Chem. Soc. Rev., vol. 45, no. 15, pp. 4042–4073, 2016.
[3]M.Mao, T.Gao, andC.Wang, “Chem Soc Rev A critical review of cathodes for rechargeable Mg batteries,” pp. 8804–8841, 2018.
[4]F.Ding et al., “Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism,” 2013.
[5]R. S.Thompson, D. J.Schroeder, C. M.López, S.Neuhold, andJ. T.Vaughey, “Electrochemistry Communications Stabilization of lithium metal anodes using silane-based coatings,” Electrochem. commun., vol. 13, no. 12, pp. 1369–1372, 2011.
[6]F.Marchioni et al., “Protection of Lithium Metal Surfaces Using Chlorosilanes,” no. 30, pp. 11597–11602, 2007.
[7]H. D.Yoo, I.Shterenberg, Y.Gofer, G.Gershinsky, N.Pour, andD.Aurbach, “Mg rechargeable batteries: an on-going challenge,” Energy Environ. Sci., vol. 6, no. 8, p. 2265, 2013.
[8]P.Saha, M. K.Datta, O. I.Velikokhatnyi, A.Manivannan, D.Alman, andP. N.Kumta, “Rechargeable magnesium battery: Current status and key challenges for the future,” Prog. Mater. Sci., vol. 66, pp. 1–86, Oct.2014.
[9]D.Aurbach et al., “Prototype systems for rechargeable magnesium batteries,” vol. 407, no. October, pp. 13–16, 2000.
[10]M. M.Huie, D. C.Bock, E. S.Takeuchi, A. C.Marschilok, andK. J.Takeuchi, “Cathode materials for magnesium and magnesium-ion based batteries,” Coord. Chem. Rev., vol. 287, pp. 15–27, Mar.2015.
[11]X.Miao, J.Yang, W.Pan, H.Yuan, Y.Nuli, andS.Hirano, “Graphite fluoride as a cathode material for primary magnesium batteries with high energy density,” Electrochim. Acta, 2016.
[12]M.Rashad, X.Li, andH.Zhang, “Magnesium/Lithium-Ion Hybrid Battery with High Reversibility by Employing NaV 3 O 8 ·1.69H 2 O Nanobelts as a Positive Electrode,” ACS Appl. Mater. Interfaces, vol. 10, no. 25, pp. 21313–21320, Jun.2018.
[13]M.Asif et al., “Ni-doped MnO 2 / CNT nanoarchitectures as a cathode material for ultra-long life magnesium / lithium hybrid ion batteries,” Mater. Today Energy, vol. 10, pp. 108–117, 2018.
[14]M.Rashad, H.Zhang, X.Li, andH.Zhang, “Fast kinetics of Mg 2+ /Li + hybrid ions in a polyanion Li 3 V 2 (PO 4 ) 3 cathode in a wide temperature range,” J. Mater. Chem. A, vol. 7, no. 16, pp. 9968–9976, 2019.
[15]D. P.J. D. Genders, “The electrodeposition and dissolution of magnesium have potential applications in surface finishing , battery technology and even electroforming or metal extraction . It is therefore not surprising that , from time to time , papers have appeared which des,” J. Electroanal. Chem., vol. 199, pp. 93–100, 1986.
[16]J. M.Nelson andW.V.Evans, “The electromotive force developed in cells containing nonaqueous liquids,” J. Am. Chem. Soc., vol. 39, no. 1, pp. 82–83, 1917.
[17]Y.Gofer, R.Turgeman, H.Cohen, andD.Aurbach, “XPS Investigation of Surface Chemistry of Magnesium Electrodes in Contact with Organic Solutions of Organochloroaluminate Complex Salts,” Langmuir, vol. 19, no. 6, pp. 2344–2348, Mar.2003.
[18]C.Liebenow, “Reversibility of electrochemical magnesium deposition from Grignard solutions,” J. Appl. Electrochem., vol. 27, no. 2, pp. 221–225, 1997.
[19]Q.Zhao, Y.NuLi, T.Nasiman, J.Yang, andJ.Wang, “Reversible Deposition and Dissolution of Magnesium from Imidazolium-Based Ionic Liquids,” Int. J. Electrochem., vol. 2012, pp. 1–8, 2012.
[20]Y. W.Huatang YUAN, Lifang JIAO, Jiansheng CAO, Xiusheng LIU, Ming ZHAO, “Development of Magnesium-Insertion Positive Electrode for Rechargeable Magnesium Batteries,” vol. 20, no. 01, pp. 41–45, 2009.
[21]W. W.Zheng, Q.Xu, F.Ding, J.Zhang, andX. J.Liu, “Preparation of porous Mg electrode by electrodeposition,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 21, no. 9, pp. 2099–2103, 2011.
[22]N.Amir, Y.Vestfrid, O.Chusid, Y.Gofer, andD.Aurbach, “Progress in nonaqueous magnesium electrochemistry,” J. Power Sources, vol. 174, no. 2, pp. 1234–1240, Dec.2007.
[23]G.Cheng, Q.Xu, M.Zhang, F.Ding, X. J.Liu, andL. F.Jiao, “Electrochemical reversibility of magnesium deposition-dissolution on aluminum substrates in Grignard reagent/THF solutions,” Chinese Sci. Bull., vol. 58, no. 27, pp. 3385–3389, 2013.
[24]P. W.Bian, Y. N.Nuli, Zainapuguli, J.Yang, andJ. L.Wang, “Benzenethiolate-based solutions for rechargeable magnesium battery electrolytes,” Wuli Huaxue Xuebao/ Acta Phys. - Chim. Sin., vol. 30, no. 2, pp. 311–317, 2014.
[25]B.Pei-Wen, N.Yan-Na, Zainapuguli, Y.Jun, andW.Jiu-Lin, “Benzenethiolate-Based Solutions for Rechargeable Magnesium Battery Electrolytes,” Acta Physico-Chimica Sin., vol. 30, no. 2, pp. 311–317, 2014.
[26]C.Wall, Z. K.Zhirong, andM.Fichtner, “Corrosion resistance of current collector materials in bisamide based electrolyte for magnesium batteries,” ECS Electrochem. Lett., vol. 4, no. 1, pp. C8–C10, 2015.
[27]R.Mohtadi, M.Matsui, T. S.Arthur, andS.-J.Hwang, “Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery,” Angew. Chemie Int. Ed., vol. 51, no. 39, pp. 9780–9783, Sep.2012.
[28]O.Tutusaus, R.Mohtadi, T. S.Arthur, F.Mizuno, E. G.Nelson, andY.V.Sevryugina, “An Efficient Halogen-Free Electrolyte for Use in Rechargeable Magnesium Batteries,” Angew. Chemie - Int. Ed., vol. 54, no. 27, pp. 7900–7904, 2015.
[29]E. N.Keyzer et al., “Mg(PF6)2-Based Electrolyte Systems: Understanding Electrolyte-Electrode Interactions for the Development of Mg-Ion Batteries,” J. Am. Chem. Soc., vol. 138, no. 28, pp. 8682–8685, 2016.
[30]R.Schwarz, M.Pejic, P.Fischer, M.Marinaro, L.Jörissen, andM.Wachtler, “Magnesocene-Based Electrolytes: A New Class of Electrolytes for Magnesium Batteries,” Angew. Chemie - Int. Ed., vol. 55, no. 48, pp. 14958–14962, 2016.
[31]W. E.Geiger andF.Barrière, “Organometallic electrochemistry based on electrolytes containing weakly-coordinating fluoroarylborate anions,” Acc. Chem. Res., vol. 43, no. 7, pp. 1030–1039, 2010.
[32]I.Krossing andI.Raabe, “Noncoordinating anions - Fact or fiction? A survey of likely candidates,” Angew. Chemie - Int. Ed., vol. 43, no. 16, pp. 2066–2090, 2004.
[33]S.Tsujioka, B. G.Nolan, H.Takase, B. P.Fauber, andS. H.Strauss, “Conductivities and Electrochemical Stabilities of Lithium Salts of Polyfluoroalkoxyaluminate Superweak Anions,” J. Electrochem. Soc., vol. 151, no. 9, p. A1418, 2004.
[34]F.Kita et al., “Characteristics of the electrolyte with fluoro organic lithium salts,” J. Power Sources, vol. 90, no. 1, pp. 27–32, 2000.
[35]W.Xu andC. A.Angell, “Fusible orthoborate lithium salt with high conductivity in solutions,” Electrochem. Solid-State Lett., vol. 3, no. 8, pp. 366–368, 2000.
[36]S.Bulut, P.Klose, andI.Krossing, “Na[B(hfip)4] (hfip = OC(H)(CF3)2): A weakly coordinating anion salt and its first application to prepare ionic liquids,” Dalt. Trans., vol. 40, no. 32, pp. 8114–8124, 2011.
[37]H. V. W. P. C.Zeeman, “IH o p trik u n d P h y s io lo g is c h e O p tik Die optische Wirkungsweise [38]A.Manthiram andJ.Kim, “Low Temperature Synthesis of Insertion Oxides for Lithium Batteries,” Chem. Mater., vol. 10, no. 10, pp. 2895–2909, Oct.1998.
[39]J.Muldoon et al., “Electrolyte roadblocks to a magnesium rechargeable battery,” Energy Environ. Sci., vol. 5, no. 3, pp. 5941–5950, 2012.
[40]D.Aurbach, I.Weissman, Y.Gofer, andE.Levi, “Nonaqueous magnesium electrochemistry and its application in secondary batteries,” Chem. Rec., vol. 3, no. 1, pp. 61–73, 2003.
[41]J.Du, Z.Wang, Y.Niu, W.Duan, andZ.Wu, “Double liquid electrolyte for primary Mg batteries,” J. Power Sources, vol. 247, pp. 840–844, Feb.2014.
[42]M.Walter, M.V.Kovalenko, andK.V.Kravchyk, “Challenges and benefits of post-lithium-ion batteries,” New J. Chem., vol. 44, no. 5, pp. 1677–1683, 2020.
[43]P.Canepa et al., “Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges,” Chem. Rev., vol. 117, no. 5, pp. 4287–4341, 2017.
[44]J.Muldoon, C. B.Bucur, andT.Gregory, “Quest for Nonaqueous Multivalent Secondary Batteries: Magnesium and Beyond,” Chem. Rev., vol. 114, no. 23, pp. 11683–11720, Dec.2014.
[45]J.Muldoon, C. B.Bucur, andT.Gregory, “Fervent Hype behind Magnesium Batteries: An Open Call to Synthetic Chemists—Electrolytes and Cathodes Needed,” Angew. Chemie - Int. Ed., vol. 56, no. 40, pp. 12064–12084, 2017.
[46]O.Tutusaus, R.Mohtadi, N.Singh, T. S.Arthur, andF.Mizuno, “Study of Electrochemical Phenomena Observed at the Mg Metal/Electrolyte Interface,” ACS Energy Lett., vol. 2, no. 1, pp. 224–229, 2017.
[47]H. D.Yoo et al., “Degradation Mechanisms of Magnesium Metal Anodes in Electrolytes Based on (CF3SO2)2N- at High Current Densities,” Langmuir, vol. 33, no. 37, pp. 9398–9406, 2017.
[48]J.Song, E.Sahadeo, M.Noked, andS. B.Lee, “Mapping the Challenges of Magnesium Battery,” J. Phys. Chem. Lett., vol. 7, no. 9, pp. 1736–1749, 2016.
[49]A. L.Lipson et al., “Practical Stability Limits of Magnesium Electrolytes,” J. Electrochem. Soc., vol. 163, no. 10, pp. A2253–A2257, Aug.2016.
[50]J. W.Choi andD.Aurbach, “Promise and reality of post-lithium-ion batteries with high energy densities,” Nat. Rev. Mater., vol. 1, 2016.
[51]Z.Zhao-Karger andM.Fichtner, “Beyond Intercalation Chemistry for Rechargeable Mg Batteries: A Short Review and Perspective,” Front. Chem., vol. 6, no. JAN, pp. 1–12, Jan.2019.
[52]M.Mao, T.Gao, S.Hou, andC.Wang, “A critical review of cathodes for rechargeable Mg batteries,” Chem. Soc. Rev., vol. 47, no. 23, pp. 8804–8841, 2018.
[53]R.Deivanayagam, B. J.Ingram, andR.Shahbazian-Yassar, “Progress in development of electrolytes for magnesium batteries,” Energy Storage Mater., vol. 21, no. April, pp. 136–153, 2019.
[54]Z.Zhang et al., “Novel Design Concepts of Efficient Mg-Ion Electrolytes toward High-Performance Magnesium–Selenium and Magnesium–Sulfur Batteries,” Adv. Energy Mater., vol. 7, no. 11, pp. 1–10, 2017.
[55]I.Shterenberg, M.Salama, Y.Gofer, andD.Aurbach, “Hexafluorophosphate-Based Solutions for Mg Batteries and the Importance of Chlorides,” Langmuir, vol. 33, no. 37, pp. 9472–9478, 2017.
[56]T. D.GREGORY, R. J.HOFFMAN, andR. C.WINTERTON, “ChemInform Abstract: Nonaqueous Electrochemistry of Magnesium. Applications to Energy Storage.,” ChemInform, vol. 21, no. 22, May1990.
[57]J. O.Besenhard andM.Winter, “Advances in battery technology: Rechargeable magnesium batteries and novel negative-electrode materials for lithium ion batteries,” ChemPhysChem, vol. 3, no. 2, pp. 155–159, 2002.
[58]J.Jamnik, “Treatment of the Impedance of Mixed Conductors Equivalent Circuit Model and Explicit Approximate Solutions,” J. Electrochem. Soc., vol. 146, no. 11, p. 4183, 1999.
[59]H.Zhao, J.Xu, D.Yin, andY.Du, “Electrolytes for Batteries with Earth-Abundant Metal Anodes,” Chem. - A Eur. J., vol. 24, no. 69, pp. 18220–18234, 2018.
[60]D.Luder andY.Ein-Eli, “Electrochemical Grignard Reagent Synthesis for Ionic-Liquid-Based Magnesium-Air Batteries,” ChemElectroChem, vol. 1, no. 8, pp. 1319–1326, 2014.
[61]O.Tutusaus andR.Mohtadi, “Paving the Way towards Highly Stable and Practical Electrolytes for Rechargeable Magnesium Batteries,” ChemElectroChem, vol. 2, no. 1, pp. 51–57, 2015.
[62]S.Tröger‐Müller andC.Liedel, “A Zwitterionic Liquid Electrolyte for Magnesium Batteries,” Batter. Supercaps, vol. 2, no. 3, pp. 223–228, 2019.
[63]D.Aurbach et al., “A short review on the comparison between Li battery systems and rechargeable magnesium battery technology,” J. Power Sources, vol. 97–98, pp. 28–32, 2001.
[64]Z.Ogumi andS. K.Jeong, “SPM Analysis of Surface Film Formation on Graphite Negative Electrodes in Lithium-Ion Batteries,” Electrochemistry, vol. 71, no. 12. pp. 1011–1017, 2003.
[65]G.Dawut, Y.Lu, Q.Zhao, J.Liang, Z. L.Tao, andJ.Chen, “Quinones as electrode materials for rechargeable lithium batteries,” Wuli Huaxue Xuebao/ Acta Phys. - Chim. Sin., vol. 32, no. 7, pp. 1593–1603, 2016.
[66]“PAUL SCHERRER INSTITUT PSI Scientifi c Report 2006,” vol. 3, pp. 30–31, 2006.
[67]J. O.Besenhard, “22.Applications: From Battery Materials to Sensor Systems,” 1994, pp. 457–508.
[68]Y.Cheng et al., “Interface Promoted Reversible Mg Insertion in Nanostructured Tin-Antimony Alloys,” Adv. Mater., vol. 27, no. 42, pp. 6598–6605, Nov.2015.
[69]R. S.Nicholson, “Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics,” Anal. Chem., vol. 37, no. 11, pp. 1351–1355, 1965.
[70]W. E.Geiger, “Reflections on future directions in organometallic electrochemistry,” Organometallics, vol. 30, no. 1, pp. 28–31, 2011.


電子全文 電子全文(網際網路公開日期:20250812)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔