|
[1]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. J. s. Taga, "Visible-light photocatalysis in nitrogen-doped titanium oxides," vol. 293, no. 5528, pp. 269-271, 2001. [2]A. Fujishima, X. Zhang, and D. A. J. S. s. r. Tryk, "TiO2 photocatalysis and related surface phenomena," vol. 63, no. 12, pp. 515-582, 2008. [3]M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. J. C. r. Bahnemann, "Environmental applications of semiconductor photocatalysis," vol. 95, no. 1, pp. 69-96, 1995. [4]H. Irie, Y. Watanabe, and K. J. T. J. o. P. C. B. Hashimoto, "Nitrogen-concentration dependence on photocatalytic activity of TiO2-x N x powders," vol. 107, no. 23, pp. 5483-5486, 2003. [5]A. Kudo and Y. J. C. S. R. Miseki, "Heterogeneous photocatalyst materials for water splitting," vol. 38, no. 1, pp. 253-278, 2009. [6]M. Ni, M. K. Leung, D. Y. Leung, K. J. R. Sumathy, and S. E. Reviews, "A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production," vol. 11, no. 3, pp. 401-425, 2007. [7]A. Fujishima and K. J. n. Honda, "Electrochemical photolysis of water at a semiconductor electrode," vol. 238, no. 5358, pp. 37-38, 1972. [8]S. N. Frank and A. J. J. T. j. o. p. c. Bard, "Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders," vol. 81, no. 15, pp. 1484-1488, 1977. [9]K. Tanaka, K. Padermpole, and T. J. W. r. Hisanaga, "Photocatalytic degradation of commercial azo dyes," vol. 34, no. 1, pp. 327-333, 2000. [10]S. Al-Qaradawi, S. R. J. J. o. P. Salman, and p. A. Chemistry, "Photocatalytic degradation of methyl orange as a model compound," vol. 148, no. 1-3, pp. 161-168, 2002. [11]B. Zielińska, J. Grzechulska, R. J. Kaleńczuk, and A. W. J. A. C. B. E. Morawski, "The pH influence on photocatalytic decomposition of organic dyes over A11 and P25 titanium dioxide," vol. 45, no. 4, pp. 293-300, 2003. [12]W. Zhou, Y. Zhou, and S. J. M. L. Tang, "Formation of TiO2 nano-fiber doped with Gd3+ and its photocatalytic activity," vol. 59, no. 24-25, pp. 3115-3118, 2005. [13]J. Li, L. Kui-ren, J. Xiao-qin, and W. J. J. o. N. U. En-de, "Preparation and Characteristics of RE-Doped TiO_2 Photocatalytic Antibacterial Materials," no. 9, p. 30, 2007. [14]D. Zhao, T. Peng, M. Liu, L. Lu, P. J. M. Cai, and m. materials, "Fabrication, characterization and photocatalytic activity of Gd3+-doped titania nanoparticles with mesostructure," vol. 114, no. 1-3, pp. 166-174, 2008. [15]Y. Liu, Y.-X. Yu, and W.-D. J. I. j. o. h. e. Zhang, "Photoelectrochemical study on charge transfer properties of nanostructured Fe2O3 modified by g-C3N4," vol. 39, no. 17, pp. 9105-9113, 2014. [16]Y.-p. Li et al., "Z-scheme electronic transfer of quantum-sized α-Fe2O3 modified g-C3N4 hybrids for enhanced photocatalytic hydrogen production," vol. 42, no. 47, pp. 28327-28336, 2017. [17]Q. Hao et al., "0D/2D Fe2O3 quantum dots/g-C3N4 for enhanced visible-light-driven photocatalysis," vol. 541, pp. 188-194, 2018. [18]A. L. Linsebigler, G. Lu, and J. T. J. C. r. Yates Jr, "Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results," vol. 95, no. 3, pp. 735-758, 1995. [19]W. Stumm, Chemistry of the solid-water interface: processes at the mineral-water and particle-water interface in natural systems. John Wiley & Son Inc., 1992. [20]H. Zhang, G. Chen, and D. W. J. J. o. M. C. Bahnemann, "Photoelectrocatalytic materials for environmental applications," vol. 19, no. 29, pp. 5089-5121, 2009. [21]J.-S. ZHANG, B. WANG, and X.-C. J. A. P.-C. S. WANG, "Chemical synthesis and applications of graphitic carbon nitride," vol. 29, no. 9, pp. 1865-1876, 2013. [22]E. Kroke, M. Schwarz, E. Horath-Bordon, P. Kroll, B. Noll, and A. D. J. N. J. o. C. Norman, "Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C 3 N 4 structures," vol. 26, no. 5, pp. 508-512, 2002. [23]V. W.-h. Lau, M. B. Mesch, V. Duppel, V. Blum, J. r. Senker, and B. V. J. J. o. t. A. C. S. Lotsch, "Low-molecular-weight carbon nitrides for solar hydrogen evolution," vol. 137, no. 3, pp. 1064-1072, 2015. [24]X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, and Y. J. J. o. t. A. C. S. Xie, "Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging," vol. 135, no. 1, pp. 18-21, 2013. [25]W. Wang, C. Y. Jimmy, Z. Shen, D. K. Chan, and T. J. C. c. Gu, "gC 3 N 4 quantum dots: direct synthesis, upconversion properties and photocatalytic application," vol. 50, no. 70, pp. 10148-10150, 2014. [26]W. K. Darkwah and Y. J. N. r. l. Ao, "Mini review on the structure and properties (photocatalysis), and preparation techniques of graphitic carbon nitride nano-based particle, and its applications," vol. 13, no. 1, p. 388, 2018. [27]V. N. Khabashesku, J. L. Zimmerman, and J. L. J. C. o. m. Margrave, "Powder synthesis and characterization of amorphous carbon nitride," vol. 12, no. 11, pp. 3264-3270, 2000. [28]T. J. J. o. M. C. Komatsu, "Prototype carbon nitrides similar to the symmetric triangular form of melon," vol. 11, no. 3, pp. 802-803, 2001. [29]Y.-J. Bai et al., "Solvothermal preparation of graphite-like C3N4 nanocrystals," vol. 247, no. 3-4, pp. 505-508, 2003. [30]C. Li, C. Cao, and H. J. C. S. B. Zhu, "Preparation of graphitic carbon nitride by electrodeposition," vol. 48, no. 16, pp. 1737-1740, 2003. [31]S. Yang et al., "Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light," vol. 25, no. 17, pp. 2452-2456, 2013. [32]H. Xu et al., "Graphene-analogue carbon nitride: novel exfoliation synthesis and its application in photocatalysis and photoelectrochemical selective detection of trace amount of Cu 2+," vol. 6, no. 3, pp. 1406-1415, 2014. [33]X. Wang et al., "Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light," vol. 131, no. 5, pp. 1680-1681, 2009. [34]Y. S. Jun, E. Z. Lee, X. Wang, W. H. Hong, G. D. Stucky, and A. J. A. F. M. Thomas, "From melamine‐cyanuric acid supramolecular aggregates to carbon nitride hollow spheres," vol. 23, no. 29, pp. 3661-3667, 2013. [35]M. Tahir et al., "Large scale production of novel gC 3 N 4 micro strings with high surface area and versatile photodegradation ability," vol. 16, no. 9, pp. 1825-1830, 2014. [36]J. Li, B. Shen, Z. Hong, B. Lin, B. Gao, and Y. J. C. c. Chen, "A facile approach to synthesize novel oxygen-doped g-C 3 N 4 with superior visible-light photoreactivity," vol. 48, no. 98, pp. 12017-12019, 2012. [37]G. Zhang, M. Zhang, X. Ye, X. Qiu, S. Lin, and X. J. A. m. Wang, "Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution," vol. 26, no. 5, pp. 805-809, 2014. [38]G. Liu et al., "Comparative study of pure g-C3N4 and sulfur-doped g-C3N4 catalyst performance in photo-degradation of persistent pollutant under visible light," vol. 18, no. 6, pp. 4142-4154, 2018. [39]Z. Ding, X. Chen, M. Antonietti, and X. J. C. Wang, "Synthesis of transition metal‐modified carbon nitride polymers for selective hydrocarbon oxidation," vol. 4, no. 2, pp. 274-281, 2011. [40]N. Cheng et al., "Au-nanoparticle-loaded graphitic carbon nitride nanosheets: green photocatalytic synthesis and application toward the degradation of organic pollutants," vol. 5, no. 15, pp. 6815-6819, 2013. [41]J. Zhang et al., "Synthesis of a carbon nitride structure for visible‐light catalysis by copolymerization," vol. 49, no. 2, pp. 441-444, 2010. [42]J. Zhang et al., "Co‐monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light," vol. 51, no. 13, pp. 3183-3187, 2012. [43]G. Zhang and X. J. J. o. c. Wang, "A facile synthesis of covalent carbon nitride photocatalysts by Co-polymerization of urea and phenylurea for hydrogen evolution," vol. 307, pp. 246-253, 2013. [44]C. Liu, L. Jing, L. He, Y. Luan, and C. J. C. C. Li, "Phosphate-modified graphitic C 3 N 4 as efficient photocatalyst for degrading colorless pollutants by promoting O 2 adsorption," vol. 50, no. 16, pp. 1999-2001, 2014. [45]C. Li, F. Raziq, C. Liu, Z. Li, L. Sun, and L. J. A. S. S. Jing, "Enhanced photocatalytic activity for degrading pollutants of g-C3N4 by promoting oxygen adsorption after H3BO3 modification," vol. 358, pp. 240-245, 2015. [46]S. Cao, J. Low, J. Yu, and M. J. A. M. Jaroniec, "Polymeric photocatalysts based on graphitic carbon nitride," vol. 27, no. 13, pp. 2150-2176, 2015. [47]Y. He, L. Zhang, B. Teng, M. J. E. s. Fan, and technology, "New application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel," vol. 49, no. 1, pp. 649-656, 2015. [48]W. Yin et al., "Embedding metal in the interface of a pn heterojunction with a stack design for superior Z-scheme photocatalytic hydrogen evolution," vol. 8, no. 35, pp. 23133-23142, 2016. [49]H. Yang and K. J. J. o. M. S. Nakane, "Pd (II)-doped SiO 2/Fe 2 O 3 nanofibers as a novel catalyst for the ethanol dehydration reaction," vol. 54, no. 24, pp. 14763-14777, 2019. [50]M. Ristić, S. Musić, M. J. J. o. A. Godec, and Compounds, "Properties of-FeOOH,-FeOOH and-Fe2O3 particles precipitated by hydrolysis of Fe3+ ions in perchlorate containing aqueous solutions," vol. 417, no. 1, pp. 292-299, 2006. [51]A. E. Gash, T. M. Tillotson, J. H. Satcher Jr, J. F. Poco, L. W. Hrubesh, and R. L. J. C. o. M. Simpson, "Use of epoxides in the sol− gel synthesis of porous iron (III) oxide monoliths from Fe (III) salts," vol. 13, no. 3, pp. 999-1007, 2001. [52]B. Ouertani, J. Ouerfelli, M. Saadoun, H. Ezzaouia, and B. J. T. S. F. Bessaïs, "Characterisation of iron oxide thin films prepared from spray pyrolysis of iron trichloride-based aqueous solution," vol. 516, no. 23, pp. 8584-8586, 2008. [53]H. Sesigur, E. Acma, O. Addemir, and A. J. M. r. b. Tekin, "The preparation of magnetic iron oxide," vol. 31, no. 12, pp. 1573-1579, 1996. [54]L.-H. Han, H. Liu, and Y. J. P. T. Wei, "In situ synthesis of hematite nanoparticles using a low-temperature microemulsion method," vol. 207, no. 1-3, pp. 42-46, 2011. [55]W. Zhou et al., "Biosynthesis of mesoporous organic–inorganic hybrid Fe2O3 with high photocatalytic activity," vol. 29, no. 6, pp. 1893-1896, 2009. [56]X. Zhou et al., "Visible light induced photocatalytic degradation of rhodamine B on one-dimensional iron oxide particles," vol. 114, no. 40, pp. 17051-17061, 2010. [57]Y. Xu, G. Zhang, G. Du, Y. Sun, and D. J. M. L. Gao, "α-Fe2O3 nanostructures with different morphologies: Additive-free synthesis, magnetic properties, and visible light photocatalytic properties," vol. 92, pp. 321-324, 2013. [58]羅聖全, 研發奈米科技的基本工具之一電子顯微鏡介紹–SEM, 小奈米大世界. 2003. [59]羅聖全, 研發奈米科技的基本工具之一電子顯微鏡介紹–TEM, 小奈米大世界. 2003. [60]P. Qiu et al., "One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo-oxidation activity: Role of oxygen on visible light photocatalytic activity," vol. 206, pp. 319-327, 2017. [61]L. Jing et al., "Novel broad-spectrum-driven oxygen-linked band and porous defect co-modified orange carbon nitride for photodegradation of Bisphenol A and 2-Mercaptobenzothiazole," p. 122659, 2020. [62]Y. Li et al., "Co-monomer engineering optimized electron delocalization system in carbon-bridging modified g-C3N4 nanosheets with efficient visible-light photocatalytic performance," p. 119116, 2020.
|