(3.215.180.226) 您好!臺灣時間:2021/03/06 13:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳柏嘉
研究生(外文):CHEN, BO-JIA
論文名稱:氧化鐵/石墨相氮化碳複合材料的合成及羅丹明B的可見光催化降解
論文名稱(外文):Synthesis of Iron Oxide/Graphitic Carbon Nitride Composites for Photocatalytic Degradation of Rhodamine B under Visible Light
指導教授:余琬琴
指導教授(外文):YU, WAN-CHIN
口試委員:余琬琴張淑美游源祥
口試委員(外文):YU, WAN-CHINCHANG, SHU-MEIYU, YUAN-HSIANG
口試日期:2020-07-21
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:分子科學與工程系有機高分子碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:67
中文關鍵詞:氧化鐵石墨相氮化碳光催化降解羅丹明B
外文關鍵詞:iron oxidegraphitic carbon nitridephotocatalysisrhodamine B
相關次數:
  • 被引用被引用:0
  • 點閱點閱:22
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究製備氧化鐵/石墨相氮化碳光觸媒,應用於有機染料在可見光下的降解。採用單一前驅物尿素的熱裂解合成原型石墨相氮化碳,並透過添加不同比例的甲酸銨、丙二醯胺或草酸與尿素搭配,合成一系列改性的石墨相氮化碳,再利用水熱法將石墨相氮化碳與氧化鐵結合,形成氧化鐵/石墨相氮化碳複合物。研究中使用電子顯微鏡觀察光觸媒的形貌與微結構,X光繞射儀鑑定其晶體結構,紫外光可見光光譜儀測量其光學性質。染料羅丹明B光催化降解的實驗結果顯示,相較於原型石墨相氮化碳,改性的石墨相氮化碳有較好的光催化活性,其中又以丙二醯胺改性的石墨相氮化碳表現最為優異;將此改性的石墨相氮化碳與氧化鐵結合,可進一步增強其光催化活性,在可見光下照射30分鐘,染料降解率達91%,而且此複合光觸媒也具有良好的穩定性與可重複使用性。
This study details the preparation of iron oxide/graphitic carbon nitride (Fe2O3/g-CN) composites for the photocatalytic degradation of organic dye under visible light. The original g-CN was synthesized by the pyrolysis of a single precursor, urea. A series of modified g-CN photocatalysts were also prepared by using double precursors. The three precursor compounds chosen to pair with urea were ammonium formate, malonamide, and oxalic acid. Subsequently, the best performing modified g-CN was combined with iron oxide through a hydrothermal process to form iron oxide/g-CN composites. The morphology and microstructure of the as-prepared photocatalysts were studied by scanning and transmission electron microscopy. Their crystal structures and optical properties were investigated by X-ray diffraction analysis and ultraviolet-visible spectrometry, respectively. Based on the experimental results from the photocatalytic degradation of rhodamine B (RhB), the modified g-CN catalysts perform better than the original one. Among the modified g-CN, those modified with malonamide exhibited the highest photocatalytic activity. Further enhancement in photocatalytic activity can be achieved when the malonamide-modified g-CN is combined with iron oxide to form heterojunctions. The resulting Fe2O3/g-CN composite shows excellent photocatalytic activity, degrading 91% of RhB in 30 min under visible white light. In addition, the composite photocatalyst also has good stability and reusability.
摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 研究背景與文獻回顧 3
2.1 光觸媒起源與發展 3
2.2 光觸媒原理 5
2.3 石墨相氮化碳材料結構與特性 8
2.4 石墨相氮化碳製備方法 9
2.4.1 固相反應法(Solid Phase Reaction) 9
2.4.2 溶劑熱法(Solvothermal) 10
2.4.3 電化學沉積法(Electrodeposition) 10
2.4.4 熱聚合法(Thermal Polymerization) 10
2.5 石墨相氮化碳的改性 11
2.5.1 形貌調控 11
2.5.2 元素摻雜 12
2.5.3 表面修飾 12
2.5.4 半導體異質結 13
2.6 氧化鐵結構與特性 14
2.7 氧化鐵製備方法 16
2.7.1 水解法(Hydrolysis) 16
2.7.2 水熱法(Hydrothermal) 16
2.7.3 溶膠-凝膠法(Sol-Gel Method) 17
2.7.4 噴霧熱分解法(Spray Pyrolysis) 18
2.7.5 沉澱法(Precipitation) 18
2.7.6 微乳液法(Microemulsion) 19
2.8 染料簡介 19
2.8.1 染料結構之組成 19
2.8.2 染料的危害 20
2.8.3 羅丹明B (Rhodamine B,Rh B)的結構與特性 23
2.9 影響光催化的因素 25
第三章 材料與實驗方法 28
3.1 實驗藥品 28
3.2 實驗儀器 29
3.3 儀器分析原理 30
3.3.1 掃描式電子顯微鏡 (Scanning electron microscope, SEM) 30
3.3.2 穿透式電子顯微鏡 (Transmission electron microscope, TEM) 31
3.3.3 X光繞射分析儀 (X-ray diffraction, XRD) 32
3.3.4 螢光光譜儀 (Photoluminescence Spectroscopy,PL) 33
3.3.5 紫外線/可見光分光光譜儀 (UV–vis spectroscopy,UV-Vis) 34
3.4 實驗方法 35
3.4.1 實驗架構 35
3.4.2 石墨相氮化碳之製備 36
3.4.3 改性之石墨相氮化碳之製備 37
3.4.4 樹葉狀氧化鐵之製備 38
3.4.5 氧化鐵/石墨相氮化碳複合材料之合成 39
3.4.6 光催化降解染料實驗 40
3.4.7 重複使用性實驗 41
3.4.8 自由基捕捉實驗 42
第四章 結果與討論 43
4.1 石墨相氮化碳之定性分析 43
4.1.1 石墨相氮化碳之形貌 (SEM、TEM) 43
4.1.2 X-射線繞射 (XRD)之分析 48
4.2 光催化染料降解 50
4.2.1 光催化染料降解測試結果 50
4.2.2 紫外光-可見光散射光譜 55
4.2.3 光致發光光譜 (PL) 57
4.2.4 重複使用性測試 59
4.3光催化降解機制 60
4.3.1 自由基捕捉實驗 60
4.3.2 光催化染料降解機制圖 61
第五章 結論 62
參考文獻 63
[1]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. J. s. Taga, "Visible-light photocatalysis in nitrogen-doped titanium oxides," vol. 293, no. 5528, pp. 269-271, 2001.
[2]A. Fujishima, X. Zhang, and D. A. J. S. s. r. Tryk, "TiO2 photocatalysis and related surface phenomena," vol. 63, no. 12, pp. 515-582, 2008.
[3]M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. J. C. r. Bahnemann, "Environmental applications of semiconductor photocatalysis," vol. 95, no. 1, pp. 69-96, 1995.
[4]H. Irie, Y. Watanabe, and K. J. T. J. o. P. C. B. Hashimoto, "Nitrogen-concentration dependence on photocatalytic activity of TiO2-x N x powders," vol. 107, no. 23, pp. 5483-5486, 2003.
[5]A. Kudo and Y. J. C. S. R. Miseki, "Heterogeneous photocatalyst materials for water splitting," vol. 38, no. 1, pp. 253-278, 2009.
[6]M. Ni, M. K. Leung, D. Y. Leung, K. J. R. Sumathy, and S. E. Reviews, "A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production," vol. 11, no. 3, pp. 401-425, 2007.
[7]A. Fujishima and K. J. n. Honda, "Electrochemical photolysis of water at a semiconductor electrode," vol. 238, no. 5358, pp. 37-38, 1972.
[8]S. N. Frank and A. J. J. T. j. o. p. c. Bard, "Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders," vol. 81, no. 15, pp. 1484-1488, 1977.
[9]K. Tanaka, K. Padermpole, and T. J. W. r. Hisanaga, "Photocatalytic degradation of commercial azo dyes," vol. 34, no. 1, pp. 327-333, 2000.
[10]S. Al-Qaradawi, S. R. J. J. o. P. Salman, and p. A. Chemistry, "Photocatalytic degradation of methyl orange as a model compound," vol. 148, no. 1-3, pp. 161-168, 2002.
[11]B. Zielińska, J. Grzechulska, R. J. Kaleńczuk, and A. W. J. A. C. B. E. Morawski, "The pH influence on photocatalytic decomposition of organic dyes over A11 and P25 titanium dioxide," vol. 45, no. 4, pp. 293-300, 2003.
[12]W. Zhou, Y. Zhou, and S. J. M. L. Tang, "Formation of TiO2 nano-fiber doped with Gd3+ and its photocatalytic activity," vol. 59, no. 24-25, pp. 3115-3118, 2005.
[13]J. Li, L. Kui-ren, J. Xiao-qin, and W. J. J. o. N. U. En-de, "Preparation and Characteristics of RE-Doped TiO_2 Photocatalytic Antibacterial Materials," no. 9, p. 30, 2007.
[14]D. Zhao, T. Peng, M. Liu, L. Lu, P. J. M. Cai, and m. materials, "Fabrication, characterization and photocatalytic activity of Gd3+-doped titania nanoparticles with mesostructure," vol. 114, no. 1-3, pp. 166-174, 2008.
[15]Y. Liu, Y.-X. Yu, and W.-D. J. I. j. o. h. e. Zhang, "Photoelectrochemical study on charge transfer properties of nanostructured Fe2O3 modified by g-C3N4," vol. 39, no. 17, pp. 9105-9113, 2014.
[16]Y.-p. Li et al., "Z-scheme electronic transfer of quantum-sized α-Fe2O3 modified g-C3N4 hybrids for enhanced photocatalytic hydrogen production," vol. 42, no. 47, pp. 28327-28336, 2017.
[17]Q. Hao et al., "0D/2D Fe2O3 quantum dots/g-C3N4 for enhanced visible-light-driven photocatalysis," vol. 541, pp. 188-194, 2018.
[18]A. L. Linsebigler, G. Lu, and J. T. J. C. r. Yates Jr, "Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results," vol. 95, no. 3, pp. 735-758, 1995.
[19]W. Stumm, Chemistry of the solid-water interface: processes at the mineral-water and particle-water interface in natural systems. John Wiley & Son Inc., 1992.
[20]H. Zhang, G. Chen, and D. W. J. J. o. M. C. Bahnemann, "Photoelectrocatalytic materials for environmental applications," vol. 19, no. 29, pp. 5089-5121, 2009.
[21]J.-S. ZHANG, B. WANG, and X.-C. J. A. P.-C. S. WANG, "Chemical synthesis and applications of graphitic carbon nitride," vol. 29, no. 9, pp. 1865-1876, 2013.
[22]E. Kroke, M. Schwarz, E. Horath-Bordon, P. Kroll, B. Noll, and A. D. J. N. J. o. C. Norman, "Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C 3 N 4 structures," vol. 26, no. 5, pp. 508-512, 2002.
[23]V. W.-h. Lau, M. B. Mesch, V. Duppel, V. Blum, J. r. Senker, and B. V. J. J. o. t. A. C. S. Lotsch, "Low-molecular-weight carbon nitrides for solar hydrogen evolution," vol. 137, no. 3, pp. 1064-1072, 2015.
[24]X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, and Y. J. J. o. t. A. C. S. Xie, "Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging," vol. 135, no. 1, pp. 18-21, 2013.
[25]W. Wang, C. Y. Jimmy, Z. Shen, D. K. Chan, and T. J. C. c. Gu, "gC 3 N 4 quantum dots: direct synthesis, upconversion properties and photocatalytic application," vol. 50, no. 70, pp. 10148-10150, 2014.
[26]W. K. Darkwah and Y. J. N. r. l. Ao, "Mini review on the structure and properties (photocatalysis), and preparation techniques of graphitic carbon nitride nano-based particle, and its applications," vol. 13, no. 1, p. 388, 2018.
[27]V. N. Khabashesku, J. L. Zimmerman, and J. L. J. C. o. m. Margrave, "Powder synthesis and characterization of amorphous carbon nitride," vol. 12, no. 11, pp. 3264-3270, 2000.
[28]T. J. J. o. M. C. Komatsu, "Prototype carbon nitrides similar to the symmetric triangular form of melon," vol. 11, no. 3, pp. 802-803, 2001.
[29]Y.-J. Bai et al., "Solvothermal preparation of graphite-like C3N4 nanocrystals," vol. 247, no. 3-4, pp. 505-508, 2003.
[30]C. Li, C. Cao, and H. J. C. S. B. Zhu, "Preparation of graphitic carbon nitride by electrodeposition," vol. 48, no. 16, pp. 1737-1740, 2003.
[31]S. Yang et al., "Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light," vol. 25, no. 17, pp. 2452-2456, 2013.
[32]H. Xu et al., "Graphene-analogue carbon nitride: novel exfoliation synthesis and its application in photocatalysis and photoelectrochemical selective detection of trace amount of Cu 2+," vol. 6, no. 3, pp. 1406-1415, 2014.
[33]X. Wang et al., "Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light," vol. 131, no. 5, pp. 1680-1681, 2009.
[34]Y. S. Jun, E. Z. Lee, X. Wang, W. H. Hong, G. D. Stucky, and A. J. A. F. M. Thomas, "From melamine‐cyanuric acid supramolecular aggregates to carbon nitride hollow spheres," vol. 23, no. 29, pp. 3661-3667, 2013.
[35]M. Tahir et al., "Large scale production of novel gC 3 N 4 micro strings with high surface area and versatile photodegradation ability," vol. 16, no. 9, pp. 1825-1830, 2014.
[36]J. Li, B. Shen, Z. Hong, B. Lin, B. Gao, and Y. J. C. c. Chen, "A facile approach to synthesize novel oxygen-doped g-C 3 N 4 with superior visible-light photoreactivity," vol. 48, no. 98, pp. 12017-12019, 2012.
[37]G. Zhang, M. Zhang, X. Ye, X. Qiu, S. Lin, and X. J. A. m. Wang, "Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution," vol. 26, no. 5, pp. 805-809, 2014.
[38]G. Liu et al., "Comparative study of pure g-C3N4 and sulfur-doped g-C3N4 catalyst performance in photo-degradation of persistent pollutant under visible light," vol. 18, no. 6, pp. 4142-4154, 2018.
[39]Z. Ding, X. Chen, M. Antonietti, and X. J. C. Wang, "Synthesis of transition metal‐modified carbon nitride polymers for selective hydrocarbon oxidation," vol. 4, no. 2, pp. 274-281, 2011.
[40]N. Cheng et al., "Au-nanoparticle-loaded graphitic carbon nitride nanosheets: green photocatalytic synthesis and application toward the degradation of organic pollutants," vol. 5, no. 15, pp. 6815-6819, 2013.
[41]J. Zhang et al., "Synthesis of a carbon nitride structure for visible‐light catalysis by copolymerization," vol. 49, no. 2, pp. 441-444, 2010.
[42]J. Zhang et al., "Co‐monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light," vol. 51, no. 13, pp. 3183-3187, 2012.
[43]G. Zhang and X. J. J. o. c. Wang, "A facile synthesis of covalent carbon nitride photocatalysts by Co-polymerization of urea and phenylurea for hydrogen evolution," vol. 307, pp. 246-253, 2013.
[44]C. Liu, L. Jing, L. He, Y. Luan, and C. J. C. C. Li, "Phosphate-modified graphitic C 3 N 4 as efficient photocatalyst for degrading colorless pollutants by promoting O 2 adsorption," vol. 50, no. 16, pp. 1999-2001, 2014.
[45]C. Li, F. Raziq, C. Liu, Z. Li, L. Sun, and L. J. A. S. S. Jing, "Enhanced photocatalytic activity for degrading pollutants of g-C3N4 by promoting oxygen adsorption after H3BO3 modification," vol. 358, pp. 240-245, 2015.
[46]S. Cao, J. Low, J. Yu, and M. J. A. M. Jaroniec, "Polymeric photocatalysts based on graphitic carbon nitride," vol. 27, no. 13, pp. 2150-2176, 2015.
[47]Y. He, L. Zhang, B. Teng, M. J. E. s. Fan, and technology, "New application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel," vol. 49, no. 1, pp. 649-656, 2015.
[48]W. Yin et al., "Embedding metal in the interface of a pn heterojunction with a stack design for superior Z-scheme photocatalytic hydrogen evolution," vol. 8, no. 35, pp. 23133-23142, 2016.
[49]H. Yang and K. J. J. o. M. S. Nakane, "Pd (II)-doped SiO 2/Fe 2 O 3 nanofibers as a novel catalyst for the ethanol dehydration reaction," vol. 54, no. 24, pp. 14763-14777, 2019.
[50]M. Ristić, S. Musić, M. J. J. o. A. Godec, and Compounds, "Properties of-FeOOH,-FeOOH and-Fe2O3 particles precipitated by hydrolysis of Fe3+ ions in perchlorate containing aqueous solutions," vol. 417, no. 1, pp. 292-299, 2006.
[51]A. E. Gash, T. M. Tillotson, J. H. Satcher Jr, J. F. Poco, L. W. Hrubesh, and R. L. J. C. o. M. Simpson, "Use of epoxides in the sol− gel synthesis of porous iron (III) oxide monoliths from Fe (III) salts," vol. 13, no. 3, pp. 999-1007, 2001.
[52]B. Ouertani, J. Ouerfelli, M. Saadoun, H. Ezzaouia, and B. J. T. S. F. Bessaïs, "Characterisation of iron oxide thin films prepared from spray pyrolysis of iron trichloride-based aqueous solution," vol. 516, no. 23, pp. 8584-8586, 2008.
[53]H. Sesigur, E. Acma, O. Addemir, and A. J. M. r. b. Tekin, "The preparation of magnetic iron oxide," vol. 31, no. 12, pp. 1573-1579, 1996.
[54]L.-H. Han, H. Liu, and Y. J. P. T. Wei, "In situ synthesis of hematite nanoparticles using a low-temperature microemulsion method," vol. 207, no. 1-3, pp. 42-46, 2011.
[55]W. Zhou et al., "Biosynthesis of mesoporous organic–inorganic hybrid Fe2O3 with high photocatalytic activity," vol. 29, no. 6, pp. 1893-1896, 2009.
[56]X. Zhou et al., "Visible light induced photocatalytic degradation of rhodamine B on one-dimensional iron oxide particles," vol. 114, no. 40, pp. 17051-17061, 2010.
[57]Y. Xu, G. Zhang, G. Du, Y. Sun, and D. J. M. L. Gao, "α-Fe2O3 nanostructures with different morphologies: Additive-free synthesis, magnetic properties, and visible light photocatalytic properties," vol. 92, pp. 321-324, 2013.
[58]羅聖全, 研發奈米科技的基本工具之一電子顯微鏡介紹–SEM, 小奈米大世界. 2003.
[59]羅聖全, 研發奈米科技的基本工具之一電子顯微鏡介紹–TEM, 小奈米大世界. 2003.
[60]P. Qiu et al., "One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo-oxidation activity: Role of oxygen on visible light photocatalytic activity," vol. 206, pp. 319-327, 2017.
[61]L. Jing et al., "Novel broad-spectrum-driven oxygen-linked band and porous defect co-modified orange carbon nitride for photodegradation of Bisphenol A and 2-Mercaptobenzothiazole," p. 122659, 2020.
[62]Y. Li et al., "Co-monomer engineering optimized electron delocalization system in carbon-bridging modified g-C3N4 nanosheets with efficient visible-light photocatalytic performance," p. 119116, 2020.


電子全文 電子全文(網際網路公開日期:20250824)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔