跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 21:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉靖琁
研究生(外文):LIU, CHIN-HSUAN
論文名稱:以KINECT為基礎之關節協調分析及動作復健系統之研究
論文名稱(外文):Study of Body Joint Coordination Patterns Assessment and Physical Rehabilitation System by Using Kinect
指導教授:陳彥霖陳彥霖引用關係
指導教授(外文):CHEN, YEN-LIN
口試委員:嚴成文林志哲高立人李昭賢蔣欣翰施以諾陳彥霖
口試委員(外文):YEN, CHEN-WENLIN, CHIH-JERKAU, LIH-JENLEE, CHAO-HSIENCHIANG, HSIN-HANSHIH, YI-NUOCHEN, YEN-LIN
口試日期:2020-06-16
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:資訊工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:115
中文關鍵詞:深度感測器姿勢控制關節協調肢體辨識動作復健
外文關鍵詞:depth sensorspostural controlinter-joint coordinationextremity identificationrehabilitation actions
相關次數:
  • 被引用被引用:0
  • 點閱點閱:396
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
Abstract iii
誌謝 v
發表清冊 vi
Table of Contents ix
List of Tables xiii
List of Figures xiv
Chapter 1 Introduction 1
1.1 Motivation and Objectives 1
1.2 Contributions 2
1.3 Dissertation Outline 5
Chapter 2 Care Needs of People with Illnesses 6
2.1 Care Needs of People with Illnesses in Rehabilitation Phase 6
2.1.1 Care Needs of Elderly People 6
2.1.1.1 Physiological Condition Control 7
2.1.1.2 Fall Prevention 8
2.1.2 Care Needs of Patient with Schizophrenia 10
2.1.2.1 Physiological Condition Control 12
2.1.2.2 Symptoms and Psychological Condition Control 13
Chapter 3 Applications of Technology in Healthcare 19
3.1 Application of Kinect Depth Sensors 20
3.1.1 Gait and Balance 22
3.1.1.1 Introduction to Gait and Balance Assessment 23
3.1.1.2 Related Work of Gait and Balance Assessment by Using Kinect 24
3.1.2 Motion Identification 25
3.1.2.1 Introduction to Extremity Identification 25
3.1.2.2 Related Work of Extremity Action Identification 26
3.1.2.3 Vision-Based Action Identification Techniques 27
3.1.3 Physical Rehabilitation by Using Kinect 29
Chapter 4 Application of Physical Evaluation and Rehabilitation by Using Kinect 33
4.1 Developing Postural Stability Features to Assess Body Joint Coordination Patterns 34
4.1.1 The Importance of Developing Postural Stability Features 34
4.1.2 Materials 35
4.1.2.1 Kinect Depth Sensor System 35
4.1.2.2 Participants 36
4.1.2.3 Standing Still Experiment 37
4.1.2.4 Data Processing 37
4.1.3 Methodology 38
4.1.3.1 Local Inter-Joint Coordination Pattern (IJCP) Feature 38
4.1.3.2 Global Inter-Joint Coordination Features 40
4.1.4 Results of Postural Stability Features of Body Joint Coordination Patterns 41
4.1.5 Discussion of Postural Stability Features of Body Joint Coordination Patterns 46
4.1.6 Conclusions of Postural Stability Features of Body Joint Coordination Patterns 49
4.2 An Upper Extremity Rehabilitation System Using Efficient Vision-Based Action Identification Techniques 50
4.2.1 The Proposed and the Proposed Action Identification System for Upper Extremity Rehabilitation at Home 50
4.2.2 Materials 52
4.2.2.1 Experimental Environment 52
4.2.3 The Proposed Methods 53
4.2.3.1 Depth / RGB Image Sensor 53
4.2.3.2 Skeletonizing 54
4.2.3.3 Skin Detection 58
4.2.3.4 Skeleton Point Establishment 59
4.2.3.5 Action Classifier 63
4.2.4 Results of Proposed Action Identification System 66
4.2.5 Discussion of Proposed System Comparison with Others 73
4.2.6 Conclusions of the Upper Extremity Rehabilitation System Using Efficient Vision-Based Action Identification Techniques 74
4.3 Effects of Rehabilitation Homecare System on Physical Fitness Promotion in Patients with Schizophrenia 76
4.3.1 Clinical Applications of Rehabilitation Homecare System on Physical Fitness Promotion in Patients with Schizophrenia 76
4.3.2 Materials and Methods of this Clinical Applications Experiment 76
4.3.2.1 Experimental Procedure 76
4.3.2.2 Participants 77
4.3.2.3 Experimental Materials 78
4.3.2.4 Measures of Physical Function 79
 6-Minute Walk Test (6MWT) 79
 Timed Up and Go Test (TUG) 79
4.3.2.5 Data Analyses 80
4.3.3 Results of Clinical Applications Experiment 80
4.3.4 Discussion of Effects of Rehabilitation Homecare System on Physical Fitness Promotion in Patients with Schizophrenia 87
4.3.5 Conclusions of Effects of Rehabilitation Homecare System on Physical Fitness Promotion in Patients with Schizophrenia 88
Chapter 5 Summary and Future Work 90
5.1 Conclusion 90
5.2 Future Work 92
References 94

[1] Li, H.; Xu, L.; Chi, I., Perceived need for home-and community-based services: Experiences of urban Chinese older adults with functional impairments. Journal of aging & social policy 2017, 29, (2), 182-196.
[2] Wild, B.; Heider, D.; Maatouk, I.; Slaets, J.; König, H.-H.; Niehoff, D.; Saum, K.-U.; Brenner, H.; Söllner, W.; Herzog, W., Significance and costs of complex biopsychosocial health care needs in elderly people: results of a population-based study. Psychosomatic medicine 2014, 76, (7), 497-502.
[3] Williams, J.; Lyons, B.; Rowland, D., Unmet long-term care needs of elderly people in the community; A review of the literature. Home Health Care Services Quarterly 1997, 16, (1-2), 93-119.
[4] Tosato, M.; Zamboni, V.; Ferrini, A.; Cesari, M., The aging process and potential interventions to extend life expectancy. Clinical interventions in aging 2007, 2, (3), 401.
[5] Fulop, T.; Larbi, A.; Witkowski, J. M.; McElhaney, J.; Loeb, M.; Mitnitski, A.; Pawelec, G., Aging, frailty and age-related diseases. Biogerontology 2010, 11, (5), 547-563.
[6] Al-Momani, M.; Al-Momani, F.; Alghadir, A. H.; Alharethy, S.; Gabr, S. A., Factors related to gait and balance deficits in older adults. Clinical interventions in aging 2016, 11, 1043.
[7] Ungar, A.; Rafanelli, M.; Iacomelli, I.; Brunetti, M. A.; Ceccofiglio, A.; Tesi, F.; Marchionni, N., Fall prevention in the elderly. Clinical Cases in mineral and bone metabolism 2013, 10, (2), 91.
[8] Roberts, T.D.M. Understanding Balance: The Mechanics of Posture and Locomotion, 1st ed.; Chapman & Hall: London, UK, 1995; pp. 1–4.
[9] Dittrich, W.; Hawken, M. Towards a more balanced understanding of motor control systems. Psycoloquy 1996, 7, 40.
[10] Pollock, A.S.; Durward, B.R.; Rowe, P.J.; Paul, J.P. What is balance? Clinical rehabilitation 2000, 14, 402–406.
[11] Fernie, G.R.; Gryfe, C.; Holliday, P.J.; Llewellyn, A. The relationship of postural sway in standing to the incidence of falls in geriatric subjects. Age Ageing 1982, 11, 11–16.
[12] Thapa, P.B.; Gideon, P.; Brockman, K.G.; Fought, R.L.; Ray, W.A. Clinical and biomechanical measures of balance fall predictors in ambulatory nursing home residents. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 1996, 51, M239–M246.
[13] Piirtola, M.; Era, P. Force platform measurements as predictors of falls among older people—A review. Gerontology 2006, 52, 1–16.
[14] Pajala, S.; Era, P.; Koskenvuo, M.; Kaprio, J.; Törmäkangas, T.; Rantanen, T. Force platform balance measures as predictors of indoor and outdoor falls in community-dwelling women aged 63–76 years. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 2008, 63, 171–178.
[15] Kurz, I.; Oddsson, L.; Melzer, I. Characteristics of balance control in older persons who fall with injury–a prospective study. Journal of electromyography and kinesiology 2013, 23, 814–819.
[16] World Health Organization. Available online: http://www.who.int/mediacentre/factsheets/fs344/en/ (accessed on 16 December 2019).
[17] World Health Organization. Available online: https://www.who.int/ageing/publications/Falls_prevention7March.pdf (accessed on 16 December 2019).
[18] Bernstein, N.A. The Coordinationa and Regulation of Movements, 1st ed.; Pergarmon Press: Oxford, UK, 1967; pp. 1–196.
[19] Hendriks, M. R.; Bleijlevens, M. H.; Van Haastregt, J. C.; Crebolder, H. F.; Diederiks, J. P.; Evers, S. M.; Mulder, W. J.; Kempen, G. I.; Van Rossum, E.; Ruijgrok, J. M., Lack of effectiveness of a multidisciplinary fall‐prevention program in elderly people at risk: A randomized, controlled trial. Journal of the American Geriatrics Society 2008, 56, (8), 1390-1397.
[20] Slater, A. E.; Lewis, M. E., Introduction to infant development. Oxford University Press: 2002.
[21] Rearick, M. P.; Santello, M., Force synergies for multifingered grasping: Effect of predictability in object center of mass and handedness. Experimental brain research 2002, 144, (1), 38-49.
[22] Rearick, M. P.; Casares, A.; Santello, M., Task-dependent modulation of multi-digit force coordination patterns. Journal of neurophysiology 2003, 89, (3), 1317-1326.
[23] Shim, J. K.; Lay, B. S.; Zatsiorsky, V. M.; Latash, M. L., Age-related changes in finger coordination in static prehension tasks. Journal of Applied Physiology 2004, 97, (1), 213-224.
[24] Shim, J. K.; Olafsdottir, H.; Zatsiorsky, V. M.; Latash, M. L., The emergence and disappearance of multi-digit synergies during force-production tasks. Experimental Brain Research 2005, 164, (2), 260-270.
[25] Olafsdottir, H.; Yoshida, N.; Zatsiorsky, V. M.; Latash, M. L., Anticipatory covariation of finger forces during self-paced and reaction time force production. Neuroscience letters 2005, 381, (1-2), 92-96.
[26] Diermayr, G.; McIsaac, T. L.; Gordon, A. M., Finger force coordination underlying object manipulation in the elderly–a mini-review. Gerontology 2011, 57, (3), 217-227.
[27] Park, J.; Sun, Y.; Zatsiorsky, V. M.; Latash, M. L., Age-related changes in optimality and motor variability: an example of multifinger redundant tasks. Experimental brain research 2011, 212, (1), 1-18.
[28] Morasso, P. G.; Sanguineti, V., Ankle muscle stiffness alone cannot stabilize balance during quiet standing. Journal of neurophysiology 2002, 88, (4), 2157-2162.
[29] Winter, D. A.; Patla, A. E.; Ishac, M.; Gage, W. H., Motor mechanisms of balance during quiet standing. Journal of electromyography and kinesiology 2003, 13, (1), 49-56.
[30] Colobert, B.; Crétual, A.; Allard, P.; Delamarche, P., Force-plate based computation of ankle and hip strategies from double-inverted pendulum model. Clinical biomechanics 2006, 21, (4), 427-434.
[31] Hsu, W.-L.; Scholz, J. P.; Schoner, G.; Jeka, J. J.; Kiemel, T., Control and estimation of posture during quiet stance depends on multijoint coordination. Journal of neurophysiology 2007, 97, (4), 3024-3035.
[32] Ray, C. T.; Horvat, M.; Croce, R.; Mason, R. C.; Wolf, S. L., The impact of vision loss on postural stability and balance strategies in individuals with profound vision loss. Gait & posture 2008, 28, (1), 58-61.
[33] Nashner, L.M. Practical biomechanics and physiology of balance. In Balance Function Assessment and Management, 2nd ed.; Jacobson, G.P., Shepard, N.T., Eds.; Plural Publishing Inc.: San Diego, CA, USA, 2014; pp. 431–450.
[34] Pinter, I. J.; Van Swigchem, R.; van Soest, A. K.; Rozendaal, L. A., The dynamics of postural sway cannot be captured using a one-segment inverted pendulum model: a PCA on segment rotations during unperturbed stance. Journal of neurophysiology 2008, 100, (6), 3197-3208.
[35] Günther, M.; Grimmer, S.; Siebert, T.; Blickhan, R., All leg joints contribute to quiet human stance: a mechanical analysis. Journal of biomechanics 2009, 42, (16), 2739-2746.
[36] Clark, R. A.; Pua, Y.-H.; Fortin, K.; Ritchie, C.; Webster, K. E.; Denehy, L.; Bryant, A. L., Validity of the Microsoft Kinect for assessment of postural control. Gait & posture 2012, 36, (3), 372-377.
[37] Addisu, F.; Wondafrash, M.; Chemali, Z.; Dejene, T.; Tesfaye, M., Length of stay of psychiatric admissions in a general hospital in Ethiopia: a retrospective study. International journal of mental health systems 2015, 9, (1), 13.
[38] Juntapim, S.; Nuntaboot, K., Care of patients with schizophrenia in the community. Archives of psychiatric nursing 2018, 32, (6), 855-860.
[39] Hewitt, R. D. O., Moving on: A guide to good health and recovery for people with a diagnosis of schizophrenia. Routledge: 2018.
[40] Shioda, A.; Tadaka, E.; Okochi, A., Loneliness and related factors among people with schizophrenia in Japan: a cross‐sectional study. Journal of psychiatric and mental health nursing 2016, 23, (6-7), 399-408.
[41] De Hert, M.; Correll, C. U.; Bobes, J.; Cetkovich‐Bakmas, M.; Cohen, D.; Asai, I.; Detraux, J.; Gautam, S.; MÖLLER, H. J.; Ndetei, D. M., Physical illness in patients with severe mental disorders. I. Prevalence, impact of medications and disparities in health care. World psychiatry 2011, 10, (1), 52-77.
[42] Coodin, S., Body mass index in persons with schizophrenia. The Canadian Journal of Psychiatry 2001, 46, (6), 549-555.
[43] Bennett, M.; Collier, E., Health risks of people with schizophrenia. Nursing Times 2016, 7, 1-4.
[44] Dixon, L.; Postrado, L.; Delahanty, J.; Fischer, P. J.; Lehman, A., The association of medical comorbidity in schizophrenia with poor physical and mental health. The Journal of nervous and mental disease 1999, 187, (8), 496-502.
[45] Scott, D.; Happell, B., The high prevalence of poor physical health and unhealthy lifestyle behaviours in individuals with severe mental illness. Issues in mental health nursing 2011, 32, (9), 589-597.
[46] Sokal, J.; Messias, E.; Dickerson, F. B.; Kreyenbuhl, J.; Brown, C. H.; Goldberg, R. W.; Dixon, L. B., Comorbidity of medical illnesses among adults with serious mental illness who are receiving community psychiatric services. The Journal of nervous and mental disease 2004, 192, (6), 421-427.
[47] McCreadie, R. G., Diet, smoking and cardiovascular risk in people with schizophrenia: descriptive study. The British Journal of Psychiatry 2003, 183, (6), 534-539.
[48] Faulkner, G.; Soundy, A.; Lloyd, K., Schizophrenia and weight management: a systematic review of interventions to control weight. Acta Psychiatrica Scandinavica 2003, 108, (5), 324-332.
[49] Vancampfort, D.; Rosenbaum, S.; Ward, P. B.; Stubbs, B., Exercise improves cardiorespiratory fitness in people with schizophrenia: a systematic review and meta-analysis. Schizophrenia research 2015, 169, (1-3), 453-457.
[50] Warburton, D. E.; Bredin, S. S., Reflections on physical activity and health: what should we recommend? Canadian Journal of Cardiology 2016, 32, (4), 495-504.
[51] Horvitz-Lennon, M.; Kilbourne, A. M.; Pincus, H. A., From silos to bridges: meeting the general health care needs of adults with severe mental illnesses. Health affairs 2006, 25, (3), 659-669.
[52] Salokangas, R. K., Medical problems in schizophrenia patients living in the community (alternative facilities). Current opinion in psychiatry 2007, 20, (4), 402-405.
[53] Osborn, D. P.; Levy, G.; Nazareth, I.; Petersen, I.; Islam, A.; King, M. B., Relative risk of cardiovascular and cancer mortality in people with severe mental illness from the United Kingdom's General Practice Research Database. Archives of general psychiatry 2007, 64, (2), 242-249.
[54] Bredin, S. S.; Warburton, D. E.; Lang, D. J., The health benefits and challenges of exercise training in persons living with schizophrenia: a pilot study. Brain sciences 2013, 3, (2), 821-848.
[55] Gorczynski, P.; Faulkner, G., Exercise therapy for schizophrenia. Cochrane database of systematic reviews 2010, (5), CD004412.
[56] Vancampfort, D.; Rosenbaum, S.; Probst, M.; Connaughton, J.; du Plessis, C.; Yamamoto, T.; Stubbs, B., What are the top 10 physical activity research questions in schizophrenia? Disability and rehabilitation 2016, 38, (22), 2235-2243.
[57] Firth, J.; Cotter, J.; Elliott, R.; French, P.; Yung, A. R., A systematic review and meta-analysis of exercise interventions in schizophrenia patients. Psychological medicine 2015, 45, (7), 1343-1361.
[58] Acil, A.; Dogan, S.; Dogan, O., The effects of physical exercises to mental state and quality of life in patients with schizophrenia. Journal of psychiatric and mental health nursing 2008, 15, (10), 808-815.
[59] BENGTSSON‐TOPS, A., Mastery in patients with schizophrenia living in the community: relationship to sociodemographic and clinical characteristics, needs for care and support, and social network. Journal of Psychiatric and Mental Health Nursing 2004, 11, (3), 298-304.
[60] Treisman, G. J.; Jayaram, G.; Margolis, R. L.; Pearlson, G. D.; Schmidt, C. W.; Mihelish, G. L.; Kennedy, A.; Howson, A.; Rasulnia, M.; Misiuta, I. E., Perspectives on the Use of eHealth in the Management of Patients With Schizophrenia. The Journal of nervous and mental disease 2016, 204, (8), 620.
[61] Ho, R. T.; Fong, T. C.; Wan, A. H.; Au-Yeung, F. S.; Wong, C. P.; Ng, W. Y.; Cheung, I. K.; Lo, P. H.; Ng, S.; Chan, C. L., A randomized controlled trial on the psychophysiological effects of physical exercise and Tai-chi in patients with chronic schizophrenia. Schizophrenia research 2016, 171, (1-3), 42-49.
[62] De Rouck, S.; Jacobs, A.; Leys, M., A methodology for shifting the focus of e-health support design onto user needs: a case in the homecare field. International journal of medical informatics 2008, 77, (9), 589-601.
[63] Wiersma, D.; Nienhuis, F.; Giel, R.; Slooff, C., Stability and change in needs of patients with schizophrenic disorders: a 15-and 17-year follow-up from first onset of psychosis, and a comparison between objective' and subjective' assessments of needs for care. Social Psychiatry and Psychiatric Epidemiology 1998, 33, (2), 49-56.
[64] Ding, M.; Fan, G. Articulated and generalized gaussian kernel correlation for human pose estimation. IEEE Trans. Image Process. 2016, 25, 776–789.
[65] Ding, M.; Fan, G. Articulated gaussian kernel correlation for human pose estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, MA, USA, 7–12 June 2015; pp. 57–64.
[66]Ding, M.; Fan, G. Generalized Sum of Gaussians for Real-Time Human Pose Tracking from a Single Depth Sensor. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 5–9 January 2015; pp. 47–54.
[67] Cao, Z.; Simon, T.; Wei, S.E.; Sheikh, Y. Realtime Multi-person 2D Pose Estimation Using Part Affinity Fields. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu Hawaii, 21–26 July 2017; pp. 7291–7299.
[68] Ye, M.; Wang, X.; Yang, R.; Ren, L.; Pollefeys, M. Accurate 3d pose estimation from a single depth image. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Barcelona, Spain, 6–13 November 2011; pp. 731–738.
[69] Baak, A.; Müller, M.; Bharaj, G.; Seidel, H.P.; Theobalt, C. A data-driven approach for real-time full body pose reconstruction from a depth camera. In Consumer Depth Cameras for Computer Vision; Springer: London, UK, 2013; pp. 71–98.
[70] Clark, R.A.; Bryant, A.L.; Pua, Y.; McCrory, P.; Bennell, K.; Hunt, M. Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance. Gait & Posture 2010, 31, 307–310.
[71] Bartlett, H. L.; Ting, L. H.; Bingham, J. T., Accuracy of force and center of pressure measures of the Wii Balance Board. Gait & posture 2014, 39, (1), 224-228.
[72] Jørgensen, M. G., Assessment of postural balance in community-dwelling older adults—Methodological aspects and effects of biofeedback-based Nintendo Wii training. Dan Med J [Internet] 2014, 61, (1), B4775.
[73] Gorczynski, P.; Faulkner, G., Exercise therapy for schizophrenia. Cochrane database of systematic reviews 2010, (5).
[74] DeLisa, J.A.; Gans, B.M.; Walsh, N.E. Physical Medicine and Rehabilitation: Principles and Practice; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005; Volume 1.
[75] Cameron, M. H.; Monroe, L., Physical rehabilitation for the physical therapist assistant; Elsevier Health Sciences: Amsterdam, The Netherlands, 2014.
[76] Taylor, R.S.; Watt, A.; Dalal, H.M.; Evans, P.H.; Campbell, J.L.; Read, K.L.; Mourant, A.J.; Wingham, J.; Thompson, D.R.; Pereira Gray, D.J., Home-based cardiac rehabilitation versus hospital-based rehabilitation: a cost effectiveness analysis. International journal of cardiology 2007, 119, (2), 196-201.
[77] Lindberg, B.; Nilsson, C.; Zotterman, D.; Söderberg, S.; Skär, L., Using information and communication technology in home care for communication between patients, family members, and healthcare professionals: a systematic review. International journal of telemedicine and applications 2013, 2013, 461829.
[78] Kvedar, J.; Coye, M. J.; Everett, W., Connected health: a review of technologies and strategies to improve patient care with telemedicine and telehealth. Health Affairs 2014, 33, (2), 194-199.
[79] Burke Jr, B. L.; Hall, R., Telemedicine: pediatric applications. Pediatrics 2015, 136, (1), e293.
[80] Bianciardi, M. V.; Bella, S.; Murgia, F.; Carestia, A.; Prosseda, E., Telemedicine in pediatric wound care. La Clinica terapeutica 2016, 167, (1), e21-3.
[81] Gattu, R.; Teshome, G.; Lichenstein, R., Telemedicine applications for the pediatric emergency medicine: a review of the current literature. Pediatric emergency care 2016, 32, (2), 123-130.
[82] Silva, B. M.; Rodrigues, J. J.; de la Torre Díez, I.; López-Coronado, M.; Saleem, K., Mobile-health: A review of current state in 2015. Journal of biomedical informatics 2015, 56, 265-272.
[83] Street, R. L.; Gold, W. R.; Manning, T. R., Health promotion and interactive technology: Theoretical applications and future directions. Routledge: 2013.
[84] de Vette, F.; Tabak, M.; Dekker-van Weering, M.; Vollenbroek-Hutten, M., Engaging elderly people in telemedicine through gamification. JMIR serious games 2015, 3, (2), e9.
[85] Omboni, S.; Caserini, M.; Coronetti, C., Telemedicine and m-health in hypertension management: technologies, applications and clinical evidence. High Blood Pressure & Cardiovascular Prevention 2016, 23, (3), 187-196.
[86] Chowdhury, F. M.; Ayala, C. C.; Dalmat, D.; Shantharam, S.; Chang, T.; Russell, Z.; Zhang, X., Effectiveness of Telehealth on Hypertension Management Among Disparate Populations: a Systematic Review. Circulation: Cardiovascular Quality and Outcomes 2017, 10, (suppl_3), A216-A216.
[87] Omboni, S.; Ferrari, R., The role of telemedicine in hypertension management: focus on blood pressure telemonitoring. Current hypertension reports 2015, 17(4), 21.
[88] Diaz-Monterrosas, P. R.; Posada-Gomez, R.; Martinez-Sibaja, A.; Aguilar-Lasserre, A. A.; Juarez-Martinez, U.; Trujillo-Caballero, J. C., A brief review on the validity and reliability of microsoft kinect sensors for functional assessment applications. Advances in Electrical and Computer Engineering 2018, 18(1), 131-136.
[89] Procházka, A.; Vyšata, O.; Vališ, M., Ťupa, O.; Schätz, M.; Mařík, V., Bayesian classification and analysis of gait disorders using image and depth sensors of Microsoft Kinect. Digital Signal Processing 2015, 47, 169-177.
[90] Whittle, M. W., Gait analysis: an introduction. Butterworth-Heinemann, 2014; pp.130-201.
[91] Dutta, T., Evaluation of the Kinect™ sensor for 3-D kinematic measurement in the workplace. Applied ergonomics 2012, 43, (4), 645-649.
[92] Bonnechere, B.; Jansen, B.; Salvia, P.; Bouzahouene, H.; Omelina, L.; Moiseev, F.; Sholukha, V.; Cornelis, J.; Rooze, M.; Jan, S. V. S., Validity and reliability of the Kinect within functional assessment activities: Comparison with standard stereophotogrammetry. Gait & posture 2014, 39, (1), 593-598.
[93] Galna, B.; Barry, G.; Jackson, D.; Mhiripiri, D.; Olivier, P.; Rochester, L., Accuracy of the Microsoft Kinect sensor for measuring movement in people with Parkinson's disease. Gait & posture 2014, 39, (4), 1062-1068.
[94] Yang, Y.; Pu, F.; Li, Y.; Li, S.; Fan, Y.; Li, D., Reliability and validity of Kinect RGB-D sensor for assessing standing balance. IEEE Sensors Journal 2014, 14, (5), 1633-1638.
[95] Yeung, L.; Cheng, K. C.; Fong, C.; Lee, W. C.; Tong, K.-Y., Evaluation of the Microsoft Kinect as a clinical assessment tool of body sway. Gait & posture 2014, 40, (4), 532-538.
[96] Clark, R. A.; Pua, Y.-H.; Oliveira, C. C.; Bower, K. J.; Thilarajah, S.; McGaw, R.; Hasanki, K.; Mentiplay, B. F., Reliability and concurrent validity of the Microsoft Xbox One Kinect for assessment of standing balance and postural control. Gait & posture 2015, 42, (2), 210-213.
[97] Lim, D.; Kim, C.; Jung, H.; Jung, D.; Chun, K. J., Use of the Microsoft Kinect system to characterize balance ability during balance training. Clinical interventions in aging 2015, 10, 1077.
[98] Otte, K.; Kayser, B.; Mansow-Model, S.; Verrel, J.; Paul, F.; Brandt, A. U.; Schmitz-Hübsch, T., Accuracy and reliability of the kinect version 2 for clinical measurement of motor function. PLoS One 2016, 11, (11), e0166532.
[99] Napoli, A.; Glass, S.; Ward, C.; Tucker, C.; Obeid, I., Performance analysis of a generalized motion capture system using microsoft kinect 2.0. Biomedical Signal Processing and Control 2017, 38, 265-280.
[100] Chang, Y.-J.; Chen, S.-F.; Huang, J.-D., A Kinect-based system for physical rehabilitation: A pilot study for young adults with motor disabilities. Research in developmental disabilities 2011, 32, (6), 2566-2570.
[101] Choo, B.; Landau, M.; DeVore, M.; Beling, P., Statistical analysis-based error models for the microsoft kinecttm depth sensor. Sensors 2014, 14, (9), 17430-17450.
[102] González, A.; Hayashibe, M.; Bonnet, V.; Fraisse, P., Whole body center of mass estimation with portable sensors: Using the statically equivalent serial chain and a kinect. Sensors 2014, 14, (9), 16955-16971.
[103] Mallick, T.; Das, P. P.; Majumdar, A. K., Characterizations of noise in Kinect depth images: A review. IEEE Sensors journal 2014, 14, (6), 1731-1740.
[104] Xu, X.; McGorry, R. W., The validity of the first and second generation Microsoft Kinect™ for identifying joint center locations during static postures. Applied ergonomics 2015, 49, 47-54.
[105] Funaya, H.; Shibata, T.; Wada, Y.; Yamanaka, T. Accuracy Assessment of Kinect Body Tracker in Instant Posturography for Balance Disorders. In Proceedings of the 2013 7th International Symposium on Medical Information and Communication Technology (ISMICT), Tokyo, Japan, 6–8 March 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 213–217.
[106] Clark, R. A.; Bower, K. J.; Mentiplay, B. F.; Paterson, K.; Pua, Y.-H., Concurrent validity of the Microsoft Kinect for assessment of spatiotemporal gait variables. Journal of biomechanics 2013, 46, (15), 2722-2725.
[107] Schmitz, A.; Ye, M.; Shapiro, R.; Yang, R.; Noehren, B., Accuracy and repeatability of joint angles measured using a single camera markerless motion capture system. Journal of biomechanics 2014, 47, (2), 587-591.
[108] Colagiorgio, P.; Romano, F.; Sardi, F.; Moraschini, M.; Sozzi, A.; Bejor, M.; Ricevuti, G.; Buizza, A.; Ramat, S. Affordable, Automatic Quantitative Fall Risk Assessment Based on Clinical Balance Scales and Kinect Data. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 3500–3503.
[109] De Rosario, H.; Belda-Lois, J. M.; Fos, F.; Medina, E.; Poveda-Puente, R.; Kroll, M., Correction of joint angles from Kinect for balance exercising and assessment. Journal of applied biomechanics 2014, 30, (2), 294-299.
[110] Zhao, J.; Bunn, F.E.; Perron, J.M.; Shen, E.; Allison, R.S. Gait Assessment Using the Kinect RGB-D Sensor. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 6679–6683.
[111] Lv, Z.; Penades, V.; Blasco, S.; Chirivella, J.; Gagliardo, P. Intuitive Evaluation of Kinect2 Based Balance Measurement Software. In Proceedings of the 3rd 2015 Workshop on ICTs for improving Patients Rehabilitation Research Techniques, Lisbon, Portugal, 1–2 October 2015; ACM: New York, NY, USA, 2015; pp. 62–65.
[112] Pu, F.; Sun, S.; Wang, L.; Li, Y.; Yu, H.; Yang, Y.; Zhao, Y.; Li, S., Investigation of key factors affecting the balance function of older adults. Aging clinical and experimental research 2015, 27, (2), 139-147.
[113] Lv, Z.; Penades, V.; Blasco, S.; Chirivella, J.; Gagliardo, P., Evaluation of Kinect2 based balance measurement. Neurocomputing 2016, 208, 290-298.
[114] Ejupi, A.; Gschwind, Y. J.; Valenzuela, T.; Lord, S. R.; Delbaere, K., A kinect and inertial sensor-based system for the self-assessment of fall risk: a home-based study in older people. Human–Computer Interaction 2016, 31, (3-4), 261-293.
[115] Eltoukhy, M.; Kuenze, C.; Oh, J.; Wooten, S.; Signorile, J., Kinect-based assessment of lower limb kinematics and dynamic postural control during the star excursion balance test. Gait & posture 2017, 58, 421-427.
[116] Eltoukhy, M. A.; Kuenze, C.; Oh, J.; Signorile, J. F., Validation of static and dynamic balance assessment using Microsoft Kinect for young and elderly populations. IEEE journal of biomedical and health informatics 2017, 22, (1), 147-153.
[117] Hsiao, M.-Y.; Li, C.-M.; Lu, I.-S.; Lin, Y.-H.; Wang, T.-G.; Han, D.-S., An investigation of the use of the Kinect system as a measure of dynamic balance and forward reach in the elderly. Clinical rehabilitation 2018, 32, (4), 473-482.
[118] Clark, R. A.; Mentiplay, B. F.; Hough, E.; Pua, Y. H., Three-dimensional cameras and skeleton pose tracking for physical function assessment: a review of uses, validity, current developments and Kinect alternatives. Gait & posture 2019, 68, 193-200.
[119] Chen, W. Y.; Liang, Y. W.; Hsieh, H. L.; Tsai, W. C.; Chuang, B. K.; Lin, Y. H., The effect of tele-healthcare intervention on preventable hospitalizations and healthcare utilization in Taiwan. Taiwan Gong Gong Wei Sheng Za Zhi 2016, 35(5), 524.
[120] Stone, E.; Skubic, M., Evaluation of an inexpensive depth camera for in-home gait assessment. Journal of Ambient Intelligence and Smart Environments 2011, 3(4), 349-361.
[121] Gianaria,, E.; Grangetto, M.; Roppolo, M.; Mulasso, A.; Rabaglietti, E. In Kinect-based gait analysis for automatic frailty syndrome assessment, 2016 IEEE International Conference on Image Processing (ICIP), 2016; IEEE: 2016; pp 1314-1318.
[122] Choi, J.-S.; Kang, D.-W.; Seo, J.-W.; Kim, D.-H.; Yang, S.-T.; Tack, G.-R., The development and evaluation of a program for leg-strengthening exercises and balance assessment using Kinect. Journal of physical therapy science 2016, 28, (1), 33-37.
[123] van Diest, M.; Stegenga, J.; Wörtche, H. J.; Postema, K.; Verkerke, G. J.; Lamoth, C. J., Suitability of Kinect for measuring whole body movement patterns during exergaming. Journal of biomechanics 2014, 47, (12), 2925-2932.
[124] Chakravarty, K.; Suman, S.; Bhowmick, B.; Sinha, A.; Das, A. In Quantification of balance in single limb stance using kinect, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016; IEEE: 2016; pp 854-858.
[125] Clark, R. A.; Vernon, S.; Mentiplay, B. F.; Miller, K. J.; McGinley, J. L.; Pua, Y. H.; Paterson, K.; Bower, K. J., Instrumenting gait assessment using the Kinect in people living with stroke: reliability and association with balance tests. Journal of neuroengineering and rehabilitation 2015, 12, (1), 15.
[126] González, A.; Hayashibe, M.; Fraisse, P. In Estimation of the Center of Mass with Kinect and Wii balance board, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012; IEEE: 2012; pp 1023-1028.
[127] Aggarwal, J. K.; Park, S., Human motion: Modeling and recognition of actions and interactions. In Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004; pp. 640-647.
[128] Hogg, D.; Model-based vision: a program to see a walking person. Image and Vision computing 1983, 1, (1), 5-20.
[129] Howe, N. R.; Leventon, M. E.; Freeman, W. T., Bayesian reconstruction of 3d human motion from single-camera video. In Advances in neural information processing systems, 2000; pp. 820-826.
[130] Lv, F.; Nevatia, R., Single view human action recognition using key pose matching and viterbi path searching. In 2007 IEEE Conference on Computer Vision and Pattern Recognition 2007; pp. 1-8.
[131] Elgammal, A.; Lee, C. S., Inferring 3D body pose from silhouettes using activity manifold learning. In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2004, 2, pp. II-II.
[132] O'rourke, J.; Badler, N. I., Model-based image analysis of human motion using constraint propagation. IEEE Transactions on Pattern Analysis and Machine Intelligence 1980, (6), 522-536.
[133] Rehg, J. M.; Kanade, T. In Model-based tracking of self-occluding articulated objects, Proceedings of IEEE International Conference on Computer Vision, 1995; IEEE: 1995; pp 612-617.
[134] Gavrila, D. M.; Davis, L. S. In 3-D model-based tracking of humans in action: a multi-view approach, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1996; IEEE: 1996; pp 73-80.
[135] Kakadiaris, I. A.; Metaxas, D. In Model-based estimation of 3D human motion with occlusion based on active multi-viewpoint selection, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1996; IEEE: 1996; pp 81-87.
[136] Sidenbladh, H.; Black, M. J.; Fleet, D. J. In Stochastic tracking of 3D human figures using 2D image motion, European conference on computer vision, 2000; Springer: 2000; pp 702-718.
[137] de La Gorce, M.; Fleet, D. J.; Paragios, N., Model-based 3d hand pose estimation from monocular video. IEEE transactions on pattern analysis and machine intelligence 2011, 33, (9), 1793-1805.
[138] Rohr, K. Towards model-based recognition of human movements in image sequences. CVGIP. Image understanding 1994, 59(1), 94-115.
[139] Niebles, J. C.; Wang, H.; Fei-Fei, L., Unsupervised learning of human action categories using spatial-temporal words. International journal of computer vision 2008, 79(3), 299-318.
[140] Papadopoulos, G. T.; Axenopoulos, A.; Daras, P. In Real-time skeleton-tracking-based human action recognition using kinect data, International Conference on Multimedia Modeling, 2014; Springer: 2014; pp 473-483.
[141] Zhu, G.; Zhang, L.; Shen, P.; Song, J., An online continuous human action recognition algorithm based on the Kinect sensor. Sensors 2016, 16, (2), 161.
[142]Ghojogh, B.; Mohammadzade, H.; Mokari, M., Fisherposes for human action recognition using Kinect sensor data. IEEE Sensors Journal 2017, 18, (4), 1612-1627.
[143] Liu, T.; Song, Y.; Gu, Y.; Li, A. In Human action recognition based on depth images from microsoft kinect, 2013 Fourth Global Congress on Intelligent Systems, 2013; IEEE: 2013; pp 200-204.
[144] Hung, N. T.; Bao, P. T.; Kim, J. Y., Gesture recognition in cooking video based on image features and motion features using Bayesian Network classifier. In Emerging Trends in Image Processing, Computer Vision and Pattern Recognition, Elsevier: 2015; pp 379-392.
[145] Ji, S.; Xu, W.; Yang, M.; Yu, K., 3D convolutional neural networks for human action recognition. IEEE transactions on pattern analysis and machine intelligence 2012, 35, (1), 221-231.
[146] Weinland, D.; Ronfard, R.; Boyer, E., A survey of vision-based methods for action representation, segmentation and recognition. Computer vision and image understanding 2011, 115, (2), 224-241.
[147] Akpınar, S.; Alpaslan, F. N., Optical flow-based representation for video action detection. In Emerging Trends in Image Processing, Computer Vision and Pattern Recognition, Elsevier: 2015; pp 331-351.
[148] Zanfir, M.; Leordeanu, M.; Sminchisescu, C. In The moving pose: An efficient 3d kinematics descriptor for low-latency action recognition and detection, Proceedings of the IEEE international conference on computer vision, 2013; 2013; pp 2752-2759.
[149]Hussein, M. E.; Torki, M.; Gowayyed, M. A.; El-Saban, M. In Human action recognition using a temporal hierarchy of covariance descriptors on 3d joint locations, Twenty-Third International Joint Conference on Artificial Intelligence, 2013; 2013.
[150] Fothergill, S.; Mentis, H.; Kohli, P.; Nowozin, S. In Instructing people for training gestural interactive systems, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2012; ACM: 2012; pp 1737-1746.
[151] Procházka, A.; Schätz, M.; Vyšata, O.; Vališ, M., Microsoft kinect visual and depth sensors for breathing and heart rate analysis. Sensors 2016, 16, (7), 996.
[152] Patel, S.; Park, H.; Bonato, P.; Chan, L.; Rodgers, M., A review of wearable sensors and systems with application in rehabilitation. Journal of neuroengineering and rehabilitation 2012, 9, (1), 21.
[153] Henderson, C.; Knapp, M.; Fernández, J.-L.; Beecham, J.; Hirani, S. P.; Cartwright, M.; Rixon, L.; Beynon, M.; Rogers, A.; Bower, P., Cost effectiveness of telehealth for patients with long term conditions (Whole Systems Demonstrator telehealth questionnaire study): nested economic evaluation in a pragmatic, cluster randomised controlled trial. British Medical Journal 2013, 346, f1035.
[154] Isetta, V.; Lopez-Agustina, C.; Lopez-Bernal, E.; Amat, M.; Vila, M.; Valls, C.; Navajas, D.; Farre, R., Cost-effectiveness of a new internet-based monitoring tool for neonatal post-discharge home care. Journal of medical Internet research 2013, 15, (2), e38.
[155] Grabowski, D. C.; O’Malley, A. J., Use of telemedicine can reduce hospitalizations of nursing home residents and generate savings for medicare. Health Affairs 2014, 33, (2), 244-250.
[156] Lange, B.; Chang, C.Y.; Suma, E.; Newman, B.; Rizzo, A.S.; Bolas, M. Development and evaluation of low cost game-based balance rehabilitation tool using the Microsoft Kinect sensor. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 1831–1834.
[157] Seamon, B.; DeFranco, M.; Thigpen, M., Use of the Xbox Kinect virtual gaming system to improve gait, postural control and cognitive awareness in an individual with Progressive Supranuclear Palsy. Disability and rehabilitation 2017, 39, (7), 721-726.
[158] Wang, L.; Hu, W.; Tan, T., Recent developments in human motion analysis. Pattern recognition 2003, 36(3), 585-601.
[159] Brauer, S. G.; Burns, Y. R.; Galley, P., A prospective study of laboratory and clinical measures of postural stability to predict community-dwelling fallers. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 2000, 55, (8), M469-M476.
[160] Hilliard, M. J.; Martinez, K. M.; Janssen, I.; Edwards, B.; Mille, M.-L.; Zhang, Y.; Rogers, M. W., Lateral balance factors predict future falls in community-living older adults. Archives of physical medicine and rehabilitation 2008, 89, (9), 1708-1713.
[161] Melzer, I.; Kurz, I.; Oddsson, L. I., A retrospective analysis of balance control parameters in elderly fallers and non-fallers. Clinical Biomechanics 2010, 25, (10), 984-988.
[162] PCL/OpenNI tutorial 1: Installing and testing. Available online: http://robotica.unileon.es/index.php/PCL/OpenNI_tutorial_1:_Installing_and_testing (accessed on 13 July 2018).
[163] Falahati, S. OpenNI Cookbook; Packt Publishing Ltd.: Birmingham, UK, 2013.
[164] Hackenberg, G.; McCall, R.; Broll, W. Lightweight palm and finger tracking for real-time 3D gesture control. In Proceedings of the IEEE Virtual Reality Conference, Singapore, 19–23 March 2011; pp. 19–26.
[165] Gonzalez-Sanchez, T.; Puig, D., Real-time body gesture recognition using depth camera. Electronics Letters 2011, 47, (12), 697-698.
[166] Rosenfeld, A.; Pfaltz, J. L., Sequential operations in digital picture processing. J. ACM 1966, 13, (4), 471-494.
[167] John, C.R. The image Processing Handbook, 6th ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 654–659, ISBN 9781439840634.
[168] Kakumanu, P.; Makrogiannis, S.; Bourbakis, N., A survey of skin-color modeling and detection methods. Pattern recognition 2007, 40, (3), 1106-1122.
[169] Sempena, S.; Maulidevi, N.U.; Aryan, P.R. Human action recognition using dynamic time warping. In Proceedings of the IEEE International Conference on Electrical Engineering and Informatics (ICEEI), Bandung, Indonesia, 17–19 July 2011; pp. 1–5.
[170] Muscillo, R.; Schmid, M.; Conforto, S.; D'Alessio, T., Early recognition of upper limb motor tasks through accelerometers: real-time implementation of a DTW-based algorithm. Computers in biology and medicine 2011, 41, (3), 164-172.
[171] Patlolla, C.; Mahotra, S.; Kehtarnavaz, N. Real-time hand-pair gesture recognition using a stereo webcam, In Proceedings of the IEEE International Conference on Emerging Signal Processing Applications (ESPA), Las Vegas, NV, USA, 12–14 January 2012; pp. 135–138.
[172] Chen, Y.-L.; Liu, C.-H.; Yu, C.-W.; Lee, P.; Kuo, Y.-W., An Upper Extremity Rehabilitation System Using Efficient Vision-Based Action Identification Techniques. Applied Sciences 2018, 8, (7), 1161.
[173] Neuman, S. B.; McCormick, S., Single-subject experimental research: Applications for literacy, International Reading Association: Newark, DE, USA, 1995; pp. 1–186, ISBN 0872071286.
[174] Tombaugh, T. N.; McIntyre, N. J., The mini‐mental state examination: a comprehensive review. Journal of the American Geriatrics Society 1992, 40, (9), 922-935.
[175] Byiers, B. J.; Reichle, J.; Symons, F. J., Single-subject experimental design for evidence-based practice. American Journal of Speech-Language Pathology 2012, 21, (4), 397-414.
[176] Lasser, R. A.; Nasrallah, H.; Helldin, L.; Peuskens, J.; Kane, J.; Docherty, J.; Tronco, A. T., Remission in schizophrenia: applying recent consensus criteria to refine the concept. Schizophrenia Research 2007, 96, (1-3), 223-231.
[177] A. P. Association: Diagnostic and Statistical Manual of Mental Disorders, 4th ed.; American Psychiatric Association: Washington, DC, 2000; pp. 309.
[178]Physiopedia:https://www.physio-pedia.com/Six_Minute_Walk_Test_/_6_Minute_Walk_Test (accessed July 2018).
[179] Enright, P. L., The six-minute walk test. Respiratory care 2003, 48, (8), 783-785.
[180] Herman, T.; Giladi, N.; Hausdorff, J. M., Properties of the ‘timed up and go’test: more than meets the eye. Gerontology 2011, 57, (3), 203-210.
[181] Wall, J. C.; Bell, C.; Campbell, S.; Davis, J., The Timed Get-up-and-Go test revisited: measurement of the component tasks. Journal of rehabilitation research and development 2000, 37, (1), 109-113.
[182] Podsiadlo, D.; Richardson, S., The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. Journal of the American geriatrics Society 1991, 39, (2), 142-148.

電子全文 電子全文(網際網路公開日期:20250710)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top