|
[1]Convolution Neural Network. [Image]. Retrieved from https://chtseng.files.wordpress.com/2017/09/4293_jd_lv-5awa.png?w=1140&h=463 [2]Salakhutdinov, R., Mnih, A., & Hinton, G. (2007, June). Restricted Boltzmann machines for collaborative filtering. In Proceedings of the 24th international conference on Machine learning (pp. 791-798). [3]Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788). [4]Redmon, J., & Farhadi, A. (2017). YOLO9000: better, faster, stronger. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7263-7271). [5]Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems (pp. 91-99). [6]Fukushima, K., & Miyake, S. (1982). Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition. In Competition and cooperation in neural nets (pp. 267-285). Springer, Berlin, Heidelberg. [7]LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. [8]Bouvrie, J. (2006). Notes on convolutional neural networks. [9]Chellapilla, K., Puri, S., & Simard, P. (2006, October). High performance convolutional neural networks for document processing. [10]Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105). [11]Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. [12]He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). [13]Erhan, D., Bengio, Y., Courville, A., & Vincent, P. (2009). Visualizing higher-layer features of a deep network. University of Montreal, 1341(3), 1. [14]Zeiler, M. D., Taylor, G. W., & Fergus, R. (2011, November). Adaptive deconvolutional networks for mid and high level feature learning. In 2011 International Conference on Computer Vision (pp. 2018-2025). IEEE. [15]Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional networks. In European conference on computer vision (pp. 818-833). Springer, Cham. [16]Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3431-3440). [17]Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., & Lipson, H. (2015). Understanding neural networks through deep visualization. arXiv preprint arXiv:1506.06579. [18]Harley, A. W. (2015, December). An interactive node-link visualization of convolutional neural networks. In International Symposium on Visual Computing (pp. 867-877). Springer, Cham. [19]anchor box. [Image]. Retrieved from https://2.bp.blogspot.com/-_R-w_tWHdzc/WzJPsol7qFI/AAAAAAABbgg/Jsf-AO3qH0A9oiCeU0LQxN-wdirlOz4WgCLcBGAs/s1600/%25E8%259E%25A2%25E5%25B9%2595%25E5%25BF%25AB%25E7%2585%25A7%2B2018-06-26%2B%25E4%25B8%258B%25E5%258D%258810.36.51.png [20]3d barchart created with d3-3d. Retrieved 25 February 2020, from https://bl.ocks.org/Niekes/613d43d39372f99ae2dcea14f0f90617
|