(54.236.58.220) 您好!臺灣時間:2021/03/09 16:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:高宏瑋
研究生(外文):GAO, HONG-WEI
論文名稱:工業物聯網中使用階層式區塊鏈的資料儲存系統
論文名稱(外文):Data Storage System using Hierarchical Blockchains in Industrial-IoT
指導教授:劉傳銘劉傳銘引用關係
指導教授(外文):LIU, CHUAN-MING
口試委員:劉傳銘王正豪陳震宇
口試委員(外文):LIU, CHUAN-MINGWANG, JENQ-HAURCHEN, JEN-YEU
口試日期:2020-07-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:資訊工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:43
中文關鍵詞:智能製造工業4.0區塊鏈邊緣計算大數據處理平台
外文關鍵詞:Smart ManufacturingIndustry 4.0BlockchainEdge ComputingBig Data Platform
相關次數:
  • 被引用被引用:0
  • 點閱點閱:230
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:94
  • 收藏至我的研究室書目清單書目收藏:0
區塊鏈技術在近幾年來變得更加興盛,許多工廠都陸續投入區塊鏈架構於系統中來管理工業物聯網系統的資料,基於區塊鏈的系統架構能確保資料在傳輸以及保存的過程中沒有經過竄改,然而,使用區塊鏈架構於工業物聯網系統之中,儲存空間的使用將會成為一大挑戰。由於區塊鏈本身基於對等式網路(peer-to-peer,P2P)的概念,因此任一節點都必需要持有完整的區塊鏈資訊。當節點有數以千計之時,儲存這些資料的硬碟空間成本將會隨節點的增而劇烈的增加,此外,新的加入之工作節點也必須複製原有的完整區塊鏈資訊,並會導致拓展成本的增加。為了解決上述問題,本論文提出了一種階層式架構去試圖減少區塊鏈所面臨的空間與網路傳輸成本。本架構試圖將傳統區塊鏈切分成兩個部分,分別根據邊緣端與雲端切分成私有區塊鏈與公有區塊鏈,每個工場都會管理屬於自己的私有區塊鏈,且雲端則管理自己的公有區塊鏈。在此架構下,每個工作節點僅需維護自身邊緣端的區塊鏈,而不需要與其他邊緣端進行溝通。根據我們的實驗結果,本論文可以有效的改善傳統區塊鏈下因節點拓展所面臨的空間成本,同時也能避免傳統架構下所造成的非必須網路通信開銷。
Blockchain technology is more popular in recent decades. A lot of factories have using blockchain architecture to store and manage the Industrial Internet of Things(IIOT) data. The architecture based on the blockchain can ensure that data has not tampered during transmission and storage. However, when using blockchain architecture to the IIoT, the requirement of storage space will face a grant challenge. Because the blockchain concept is similar to a P2P-based data storage system, each node must store complete blockchain information. If there are thousands of nodes, the hard disk cost will greatly increase when the node increase. Besides, the new working nodes need to copy all the data from the origin blockchain when the factory is expanding. It will cause more cost when the manufacturer has more existed nodes or data. To resolve these problems above, we purpose to reduce the expansion cost of the blockcahin architecture and network connect flow by using hierarchical blockchain design. The traditional blockchain architecture is divided into two parts, which are the edge and cloud. In each factory, will only manage its independent private blockchain, and the cloud will only manage the public blockchain. By using our architecture, the work nodes in each factory only need to maintain their private blockchain and do not need to communicte to other edges. According to our experiment, we improve the space used of blockchain and reduce the network transfer times. By using our purposed architecture, we can efficiently reduce the cost caused by nodes increase in the industrial blockchain. And avoid unnecessary network communication.
摘要..................................i
Abstract ii..........................ii
誌謝.................................iv
目錄..................................v
圖目錄..............................vii
表目錄...............................ix
1 緒論................................1
1.1 研究背景..........................1
1.2 研究動機..........................2
1.3 研究目的..........................3
1.4 論文架構..........................3
2 相關背景技術與文獻探討..............4
2.1 區塊鏈............................4
2.1.1 區塊鏈資料結構..................5
2.1.2 創世區塊........................7
2.1.3 共識制度........................7
2.1.4 區塊鏈種類......................8
2.2 雜湊樹...........................10
2.3 區塊鏈分岔.......................12
2.3.1 最長鏈原則.....................12
2.4 相關研究回顧.....................13
3 系統介紹...........................14
3.1 架構定義.........................14
3.2 系統架構.........................16
3.2.1 架構描述.......................17
3.2.2 模組介紹.......................18
3.2.3 區塊同步機制...................19
3.2.4 架構特色.......................20
3.2.5 區塊資料結構...................22
3.3 系統資訊.........................24
3.4 系統環境配置.....................26
4 實驗測試...........................29
4.1 測試項目.........................29
4.1.1 硬碟空間消耗比較...............30
4.1.2 資料量與傳輸時間比較...........33
4.1.3 通訊次數比較...................37
5 結論與未來展望.....................40
5.1 結論.............................40
5.2 未來展望.........................40
參考文獻.............................41
[1] Blockchain, wikipedia. https://en.wikipedia.org/wiki/Blockchain. Accessed April 4,2020.
[2] H. Boyes, B. Hallaq, J. Cunningham, and T. Watson. The industrial internet of things (iiot):An analysis framework. Computers in industry, 101:1–12, 2018.
[3] C. Cachin and M. Vukolić. Blockchain consensus protocols in the wild. arXiv preprintarXiv:1707.01873, 2017.
[4] A. Dorri, S. S. Kanhere, and R. Jurdak. Towards an optimized blockchain for iot. In 2017 IEEE/ACM Second International Conference on InternetofThings Design and Implementation (IoTDI), pages 173–178. IEEE, 2017.
[5] S. Huh, S. Cho, and S. Kim. Managing iot devices using blockchain platform. In 2017 19th international conference on advanced communication technology (ICACT), pages 464–467. IEEE, 2017.
[6] M. A. Khan and K. Salah. Iot security: Review, blockchain solutions, and open challenges. Future Generation Computer Systems, 82:395–411, 2018.
[7] A. Kiayias and G. Panagiotakos. Speedsecurity
tradeoffs in blockchain protocols. IACR Cryptol. ePrint Arch., 2015:1019, 2015.
[8] W. Liang, Y. Fan, K.C.Li, D. Zhang, and J.L.Gaudiot. Secure data storage and recoveryin industrial blockchain network environments. IEEE Transactions on Industrial Informatics, 2020.
[9] I.C.Lin and T.C.Liao. A survey of blockchain security issues and challenges. IJ Network Security, 19(5):653–659, 2017.
[10] N. C. Luong, Z. Xiong, P. Wang, and D. Niyato. Optimal auction for edge computing resource management in mobile blockchain networks: A deep learning approach. In 2018 IEEE International Conference on Communications (ICC), pages 1–6. IEEE, 2018.
[11] M. Mylrea and S. N. G. Gourisetti. Blockchain for smart grid resilience: Exchanging distributed energy at speed, scale and security. In 2017 Resilience Week (RWS), pages18–23. IEEE, 2017.
[12] M. Nofer, P. Gomber, O. Hinz, and D. Schiereck. Blockchain. Business & Information Systems Engineering, 59(3):183–187, 2017.
[13] M. Pilkington. Blockchain technology: principles and applications. In Research handbook on digital transformations. Edward Elgar Publishing, 2016.
[14] W. Reijers, F. O’Brolcháin, and P. Haynes. Governance in blockchain technologies & social contract theories. Ledger, 1:134–151, 2016.
[15] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision and challenges. IEEE internet of things journal, 3(5):637–646, 2016.
[16] F. Tschorsch and B. Scheuermann. Bitcoin and beyond: A technical survey on decentralized digital currencies. IEEE Communications Surveys & Tutorials, 18(3):2084–2123, 2016.
[17] S. Underwood. Blockchain beyond bitcoin, 2016.
[18] G. Wang, Z. Shi, M. Nixon, and S. Han. Chainsplitter: Towards blockchainbased
industrial iot architecture for supporting hierarchical storage. In 2019 IEEE International Conference on Blockchain (Blockchain), pages 166–175. IEEE, 2019.
[19] Z. Xiong, Y. Zhang, D. Niyato, P. Wang, and Z. Han. When mobile blockchain meets edge computing. IEEE Communications Magazine, 56(8):33–39, 2018.
[20] Z.K.Zhang, M. C. Y. Cho, C.W.Wang, C.W.Hsu, C.K.Chen, and S. Shieh. Iot security: ongoing challenges and research opportunities. In 2014 IEEE 7th international conference on serviceoriented computing and applications, pages 230–234. IEEE, 2014.
[21] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang. An overview of blockchain technology: Architecture, consensus, and future trends. In 2017 IEEE international congress on big data (BigData congress), pages 557–564. IEEE, 2017.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔