跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/21 06:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖慶文
研究生(外文):LIAO, CHING-WEN
論文名稱:合成挺立式尖晶石FeCo2S4奈米片狀以利於電化學分解水析氧反應
論文名稱(外文):Synthesis of Free-Standing Spinel FeCo2S4 Nanoplates toward Improvement of Electrocatalytic Oxygen Evolution from Water Splitting
指導教授:張裕煦郭俊宏郭俊宏引用關係
指導教授(外文):CHANG, YU-HSUKUO, CHUN-HONG
口試委員:林律吟林家正郭俊宏張裕煦
口試委員(外文):LIN, LU-YINLIN, CHIA-CHENGKUO, CHUN-HONGCHANG, YU-HSU
口試日期:2020-07-10
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:資源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:47
中文關鍵詞:尖晶石水熱法自組裝雙功能電催化整體水裂解
外文關鍵詞:SpinelHydrothermal methodSelf-assembledBifunctional ElectrocatalystOverall Water-Splitting
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要 i
ABSTRACT ii
誌謝 iv
TABLE OF CONTENTS v
LIST OF FIGURES vii
CHAPTER 1 OVERVIEW 1
CHAPTER 2 INTRODUCTION 3
2.1 Water Splitting 3
2.2 Oxygen Evolution Reaction 3
2.3 Metal-Based Catalysts 5
2.3.1 Rutile 6
2.3.2 Perovskite 7
2.3.3 Lamellar Compounds 8
2.3.4 Spinel 9
2.3.5 Metal Chalcogenide 10
2.4 Conductive Electrode Substrate 10
2.4.1 Carbon-Fiber Paper 10
2.4.2 Nickel Foam 11
CHAPTER 3 EXPERIMENTAL SECTION 12
3.1 Materials and Chemicals 12
3.2 Synthesis of Spinel FeCo2S4 Nanoplates Supported on Ni Foam and Carbon Paper 12
3.2.1 Pretreatment of bare Ni Foam and Carbon Paper 12
3.2.2 Synthesis of FeCo2O4 on Supported Ni Foam and Carbon Paper 13
3.3 Characterization 14
3.4 Electrocatalyic Watwe Splitting 14
3.4.1 Electrochemical Measurement 14
3.4.2 In-Situ Characterization in FeCo2O4-driven Oxygen Evolution Reaction 16
CHAPTER 4 RESULTS AND DISCUSSION 18
4.1 Excavated Nanospheres of FeCo2O4 and FeCo2S4 18
CHAPTER 5 CONCLUSION 43
REFERENCES 44


1.Albo, J.; Alvarez-Guerra, M.; Castano, P.; Irabien, A., Towards the electrochemical conversion of carbon dioxide into methanol. Green Chem. 2015, 17 (4), 2304-2324.
2.Liu, A. M.; Gao, M. F.; Ren, X. F.; Meng, F. N.; Yang, Y. N.; Gao, L. G.; Yang, Q. Y.; Ma, T. L., Current progress in electrocatalytic carbon dioxide reduction to fuels on heterogeneous catalysts. J. Mater. Chem. A 2020, 8 (7), 3541-3562.
3.Li, N. X.; Liu, M.; Yang, B.; Shu, W. X.; Shen, Q. H.; Liu, M. C.; Zhou, J. C., Enhanced Photocatalytic Performance toward CO2 Hydrogenation over Nanosized TiO2-Loaded Pd under UV Irradiation. J. Phys. Chem. C 2017, 121 (5), 2923-2932.
4.Liu, X. Y.; Xiao, J. P.; Peng, H. J.; Hong, X.; Chan, K.; Norskov, J. K., Understanding trends in electrochemical carbon dioxide reduction rates. Nat. Commun. 2017, 8.
5.Kleij, A. W.; North, M.; Urakawa, A., CO2 Catalysis. ChemSusChem 2017, 10 (6), 1036-1038.
6.Hu, J. R.; Ou, Y. Q.; Li, Y. H.; Gao, D.; Zhang, Y. H.; Xiao, P., FeCo2S4 Nanosheet Arrays Supported on Ni Foam: An Efficient and Durable Bifunctional Electrocatalyst for Overall Water-Splitting. ACS Sustain. Chem. Eng. 2018, 6 (9), 11724-11733.
7.Lu, X. Y.; Zhao, C. A., Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6.
8.Wu, Y. Z.; Meng, Y. A.; Hou, J. G.; Cao, S. Y.; Gao, Z. M.; Wu, Z. J.; Sun, L. C., Orienting Active Crystal Planes of New Class Lacunaris Fe2PO5 Polyhedrons for Robust Water Oxidation in Alkaline and Neutral Media. Adv. Funct. Mater. 2018, 28 (35).
9.Vukovic, M., OXYGEN EVOLUTION REACTION ON THERMALLY TREATED IRIDIUM OXIDE-FILMS. J Appl Electrochem 1987, 17 (4), 737-745.
10.Kotz, R.; Lewerenz, H. J.; Stucki, S., XPS STUDIES OF OXYGEN EVOLUTION ON Ru AND RuO2 ANODES. J. Electrochem. Soc 1983, 130 (4), 825-829.
11.Kotz, R.; Neff, H.; Stucki, S., ANODIC IRIDIUM OXIDE-FILMS - XPS-STUDIES OF OXIDATION-STATE CHANGES AND O2-EVOLUTION. J. Electrochem. Soc. 1984, 131 (1), 72-77.
12.Bockris, J. O.; Otagawa, T., THE ELECTROCATALYSIS OF OXYGEN EVOLUTION ON PEROVSKITES. J. Electrochem Soc. 1984, 131 (2), 290-302.
13.Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 2017, 46 (2), 337-365.
14.Hunter, B. M.; Hieringer, W.; Winkler, J. R.; Gray, H. B.; Muller, A. M., Effect of interlayer anions on NiFe -LDH nanosheet water oxidation activity. Energy Environ. Sci. 2016, 9 (5), 1734-1743.
15.Wang, H. Y.; Hung, S. F.; Chen, H. Y.; Chan, T. S.; Chen, H. M.; Liu, B., In Operando Identification of Geometrical-Site-Dependent Water Oxidation Activity of Spinel Co3O4. J. Am. Chem. Soc. 2016, 138 (1), 36-39.
16.Jeong, D. W.; Fang, W. J.; Shim, J. O.; Roh, H. S., High temperature water-gas shift without pre-reduction over spinel ferrite catalysts synthesized by glycine assisted sol-gel combustion method. Int. J. Hydrog Energy 2016, 41 (6), 3870-3876.
17.Zhang, H. Z.; Qiu, W. D.; Zhang, Y. F.; Han, Y.; Yu, M. H.; Wang, Z. F.; Lu, X. H.; Tong, Y. X., Surface engineering of carbon fiber paper for efficient capacitive energy storage. J. Mater. Chem. A 2016, 4 (47), 18639-18645.
18.Yang, L.; Cheng, S.; Ding, Y.; Zhu, X. B.; Wang, Z. L.; Liu, M. L., Hierarchical Network Architectures of Carbon Fiber Paper Supported Cobalt Oxide Nanonet for High-Capacity Pseudocapacitors. Nano Lett. 2012, 12 (1), 321-325.
19.Huang, L.; Chen, D. C.; Ding, Y.; Feng, S.; Wang, Z. L.; Liu, M. L., Nickel-Cobalt Hydroxide Nanosheets Coated on NiCo2O4 Nanowires Grown on Carbon Fiber Paper for High-Performance Pseudocapacitors. Nano Lett. 2013, 13 (7), 3135-3139.
20.Xiong, X. H.; Waller, G.; Ding, D.; Chen, D. C.; Rainwater, B.; Zhao, B. T.; Wang, Z. X.; Liu, M. L., Controlled synthesis of NiCo2S4 nanostructured arrays on carbon fiber paper for high-performance pseudocapacitors. Nano Energy 2015, 16, 71-80.
21.Zhao, D. P.; Dai, M. Z.; Zhao, Y.; Liu, H. Q.; Liu, Y.; Wu, X., Improving electrocatalytic activities of FeCo2O4@FeCo2S4@PPy electrodes by surface/interface regulation. Nano Energy 2020, 72.
22.Hu, X. Y.; Wang, R. J.; Sun, P.; Xiang, Z. Y.; Wang, X. F., Tip-Welded Ternary FeCo2S4 Nanotube Arrays on Carbon Cloth as Binder-Free Electrocatalysts for Highly Efficient Oxygen Evolution. ACS Sustain. Chem. Eng. 2019, 7 (24), 19426-19433.
23.Deng, C. F.; Yang, L. S.; Yang, C. M.; Shen, P.; Zhao, L. P.; Wang, Z. Y.; Wang, C. H.; Li, J. H.; Qian, D., Spinel FeCo2S4 nanoflower arrays grown on Ni foam as novel binder-free electrodes for long-cycle-life supercapacitors. Appl. Surf. Sci. 2018, 428, 148-153.
24.Xiu, N.; Zhao, K. X.; Lin, S. Y.; Xu, Z. K., Hierarchical nanosheets-anchored-on-microsheets FeCo2S4 arrays as binder-free electrode for high-performance hybrid supercapacitor. J. Alloys Compd. 2019, 805, 33-40.
25.Li, D.; Liu, Z.; Wang, J. R.; Liu, B. P.; Qin, Y. C.; Yang, W. R.; Liu, J. Q., Hierarchical trimetallic sulfide FeCo2S4-NiCo2S4 nanosheet arrays supported on a Ti mesh: An efficient 3D bifunctional electrocatalyst for full water splitting. Electrochim. Acta 2020, 340.
26.Zheng, J.; Cao, Y.; Fu, J. R.; Chen, C.; Cheng, C.; Yan, R. W.; Huang, S. G.; Wang, C. C., Facile synthesis of magnetic Fe3S4 nanosheets and their application in lithium-ion storage. J. Alloys Compd. 2016, 668, 27-32.
27.Hazarika, A.; Deka, B. K.; Kim, D.; Roh, H. D.; Park, Y. B.; Park, H. W., Fabrication and Synthesis of Highly Ordered Nickel Cobalt Sulfide Nanowire-Grown Woven Kevlar Fiber/Reduced Graphene Oxide/Polyester Composites. ACS Appl. Mater. Interfaces 2017, 9 (41), 36311-36319.
28.Chen, J. L.; Chang, C. C.; Ho, Y. K.; Chen, C. L.; Hsu, C. C.; Jang, W. L.; Wei, D. H.; Dong, C. L.; Pao, C. W.; Lee, J. F.; Chen, J. M.; Guo, J. H.; Wu, M. K., Behind the color switching in gasochromic VO2. Phy. Chem. Chem. Phys. 2015, 17 (5), 3482-3489.
29.Huang, G.; Xiao, Z. H.; Chen, R.; Wang, S. Y., Defect Engineering of Cobalt-Based Materials for Electrocatalytic Water Splitting. ACS Sustain. Chem. Eng. 2018, 6 (12), 15954-15969.
30.Risch, M.; Grimaud, A.; May, K. J.; Stoerzinger, K. A.; Chen, T. J.; Mansour, A. N.; Shao-Horn, Y., Structural Changes of Cobalt-Based Perovskites upon Water Oxidation Investigated by EXAFS. J. Phys. Chem. C 2013, 117 (17), 8628-8635.
31.Zhou, Y.; Sun, S. N.; Xi, S. B.; Duan, Y.; Sritharan, T.; Du, Y. H.; Xu, Z. C. J., Superexchange Effects on Oxygen Reduction Activity of Edge-Sharing CoxMn1-xO6 Octahedra in Spinel Oxide. Adv. Mater. 2018, 30 (11).

電子全文 電子全文(網際網路公開日期:20250714)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top