(3.232.129.123) 您好!臺灣時間:2021/03/06 02:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃國詔
研究生(外文):HUANG, KUO-CHAO
論文名稱:含硼之鈉鈣矽玻璃研磨基材開發研究
論文名稱(外文):Study of soda-lime glass binder containing boron for grinding material
指導教授:王玉瑞王玉瑞引用關係王錫福
指導教授(外文):WANG, YUH-RUEYWANG, SEA-FUE
口試委員:王玉瑞王錫福徐錦志楊希文林永仁
口試委員(外文):WANG, YUH-RUEYWANG, SEA-FUEXU, JIN-ZHIYANG, XI-WENLIN, YONG-REN
口試日期:2020-07-30
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:資源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:76
中文關鍵詞:發泡玻璃砂輪玻璃接合劑
外文關鍵詞:Foam glassGringing wheelGlass binder
相關次數:
  • 被引用被引用:0
  • 點閱點閱:25
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以溶膠-凝膠法製備含硼之矽鈉鈣硼玻璃(SNB)後再添加發泡劑及鑽石磨料製成玻璃砂輪的接合劑。砂輪是利用接合劑加入不同的磨料,固結成不同尺寸與形狀,用來進行研磨、拋光等工作。傳統的研磨材料大多以樹脂及金屬作為接合劑,隨著半導體製程中拋光研磨性能的要求日益增加,因此本研究擬以玻璃作為接合劑,除了增加研磨盤及其研磨材之壽命,並提升研屑排除及散熱之效果,以提升研磨效率。本研究目的為開發出含硼之矽鈉鈣玻璃並加入碳酸鈣作為發泡劑及鑽石磨料,探討不同原料比例與發泡溫度及發泡時間對於發泡玻璃微結構的影響。藉由粉末燒結法製備玻璃接合材料進行XRD、SEM分析,利用SmileView計算其孔徑大小與孔壁厚度。
根據實驗結果,可得知SNB5玻璃添加0.2μm-0.8μm的CaCO3加入鑽石磨料以740℃持溫60分鐘之樣品較接近研究目標且有較佳之微結構,發泡溫度740℃持溫60分鐘之樣品密度為0.41 g/cm3,平均孔徑約為198μm。
使用SNB5配方之玻璃粉末加入1 wt% CaCO3及鑽石粉末於740℃持溫60分鐘成功製備應用於研磨晶圓之砂輪,平均磨耗為0.472 "μm" /pcs。

SNB glass binding agent was prepared by sol-gel method and added foaming agent and abrasives become a grinding wheel in this study. Grinding wheels are made of different abrasives by using cement to consolidate into different sizes and shapes for grinding and polishing. Most of the traditional abrasive materials use resins and metals as binder material. With the increasing requirements for polishing and grinding performance in semiconductor manufacturing processes, the use of glass as a binder material can not only increase the life time of polishing disks and abrasive materials, but also improve the effect of grinding chips removal and heat dissipation. The purpose of this study was to develop soda-lime glass contain boron and added CaCO3 as a foaming agent and diamond abrasives, to explore the effects of different raw material ratios, foaming temperature and foaming time on the microstructure of foaming glass.
According to the experiment results, SNB5 added 0.2-0.8 μm CaCO3 and diamond abrasives foaming at 740℃ for an hour are closer to the purpose of the research and have better microstructure. The density of SNB5 foaming at 740℃ is 0.41 g/cm3.The average pore size of SNB5 foaming at 740℃ is 198 μm. The glass powder of SNB5 formula was added with 1 wt% CaCO3 and diamond abrasives and foaming at 740°C for 60 minutes to successfully prepare a grinding wheel for wafer polishing. The average abrasion is 0.472 μm/pcs.

摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 研究目的 4
第二章 基礎理論與文獻回顧 5
2.1 接合劑 5
2.1.1 玻璃作為接合劑之文獻 5
2.2 玻璃之概念及構造 6
2.2.1 玻璃之定義[5] 6
2.2.2 玻璃之組成 7
2.2.3 矽酸鹽玻璃之結構[6] 8
2.2.4 玻璃之燒結機制 9
2.3 發泡劑 10
2.3.1 發泡劑分類 10
2.3.2 發泡劑選擇 10
2.3.3 發泡劑反應機制 11
2.3.4 以碳酸鈣作為發泡劑之微結構 11
2.3.5 發泡機制 12
2.3.6 影響氣泡形態學的主要機制 13
2.3.7 影響玻璃黏度的主要因素 13
2.4 玻璃粉粒徑之影響 15
第三章 實驗流程與量測 19
3.1 實驗藥品規格 19
3.1.1 實驗用藥品資料 19
3.1.2 黏結劑 19
3.2 系統配比 20
3.3 實驗流程 21
3.4 材料性質分析及檢測儀器規格 23
3.4.1 密度與孔隙率量測 23
3.4.2 相鑑定分析(XRD) 23
3.4.3 熱差分析(DTA) 25
3.4.4 顯微結構分析(SEM) 26
3.4.5 晶圓減薄機 28
3.4.6 CTE分析 28
第四章 結果與討論 30
4.1 以溶膠-凝膠法製備玻璃粉末 30
4.1.1 玻璃熱性質分析 30
4.1.2 發泡劑熱性質分析 37
4.2 加入鑽石粉末進行共燒 38
4.2.1 不同發泡溫度 38
4.3 降低鈉含量提高硼含量 42
4.3.1 玻璃熱性質分析 42
4.3.2 燒結結果分析 46
4.4 不同鋁含量 47
4.4.1 SNB5玻璃熱性質分析 47
4.4.2 密度分析 48
4.4.3 熱穩定性分析 49
4.4.4 SEM微結構分析 50
4.4.5 加入緻密化條件 52
4.4.6 密度分析 52
4.4.7 熱穩定性分析 53
4.4.8 SEM微結構分析 54
4.4.9 SNB6玻璃熱性質分析 56
4.4.10 密度分析 57
4.4.11 熱穩定性分析 58
4.4.12 SEM微結構分析 59
4.5 不同鈉含量與硼含量 61
4.5.1 玻璃熱性質分析 61
4.5.2 密度分析 63
4.5.3 熱穩定性分析 65
4.5.4 SEM微結構分析 67
4.6 研磨數據分析 71
第五章 結果與討論 73
參考文獻 74

[1] 中國砂輪網站提供, http://www.kinik.com.tw/zh-tw/Products/CMPDiamondDisk.html.2019/5
[2] R. Cai and W. B. Rowe, “Assessment of vitrified CBN wheels for precision grinding,” Int. J. Mach. Tools Manuf., vol. 44, no. 12–13, pp. 1391–1402, 2004.
[3] M. J. Jackson, “Sintering and vitrification heat treatment of CBN grinding wheels,” J. Mater. Process. Technol., vol. 191, no. 1–3, pp. 232–234, 2007.
[4] M. P. Hitchiner, S. B. McSpadden and J. A. Webster, “Evaluation of factors controlling CBN abrasive selection for vitrified bonded wheels,” Key Eng. Mater., vol. 257–258, no. 3, pp. 267–272, 2004.
[5] 田英良、孫詩兵,新編玻璃工藝學,北京:中國輕工業出版社,2017。
[6] 汪建民,陶瓷技術手冊(下),台北:中華民國粉末冶金協會,1994。
[7] W. H. Zachariasen, “The atomic arrangement in glass,” J. Am. Chem. Soc., vol. 54, no. 10, pp. 3841–3851, 1932.
[8] W. D. Kingery, Introduction to ceramics, Wiley Intersci., 1976, pp. 98, 598, 626–627, 895, 661-663 ,683, 765.
[9] A. E. Shilo, E. K. Bondarev, and S. A. Kukharenko, “Sintering of low-melting glass powders and glass-abrasive composites,” Sci. Sinter., vol. 35, no. 3, pp. 117–124, 2003.
[10] M. Scheffler and P.Colombo, Cellular ceramics, Wiley-VCH, pp. 158–176, 2005.
[11] K. K. Éidukyavichus, V. R. Matselkene, V. V. Balkyavichus, A. A. Shpokauskas, A. A. Laukaitis, and L. Y. Kunskaite, “Use of cullet of different chemical compositions in foam glass production,” Glass and Ceramics, vol. 61, no. 3–4, pp. 77–80, 2004.
[12] E. Bernardo and F. Albertini, “Glass foams from dismantled cathode ray tubes,” Ceram. Int., vol. 32, no. 6, pp. 603–608, 2006.
[13] J. König, R. R. Petersen, and Y. Yue, “Influence of the glass-calcium carbonate mixture’s characteristics on the foaming process and the properties of the foam glass,” J. Eur. Ceram. Soc., vol. 34, no. 6, pp. 1591–1598, 2014.
[14] H. R. Fernandes, D. U. Tulyaganov, and J. M. F. Ferreira, “Preparation and characterization of foams from sheet glass and fly ash using carbonates as foaming agents,” Ceram. Int., vol. 35, no. 1, pp. 229–235, 2009.
[15] J. Lu, Z. Lu, C. Peng, X. Li, and H. Jiang, “Influence of particle size on sinterability, crystallisation kinetics and flexural strength of wollastonite glass-ceramics from waste glass and fly ash,” Mater. Chem. Phys., vol. 148, no. 1–2, pp. 449–456, 2014.
[16] J. König, R. R. Petersen, and Y. Yue, “Fabrication of highly insulating foam glass made from CRT panel glass,” Ceram. Int., vol. 41, no. 8, pp. 9793–9800, 2015.
[17] J. König, R. R. Petersen, and Y. Yue, “Influence of the glass particle size on the foaming process and physical characteristics of foam glasses,” J. Non. Cryst. Solids, vol. 447, pp. 190–197, 2016.
[18] M. Guglielmi and G. Carturan, “Precursors for sol-gel preparations,” J. Non. Cryst. Solids, vol. 100, no. 1–3, pp. 16–30, 1988.
[19] M. M. Pereira, A. E. Clark, and L. L. Hench, “Calcium phosphate formation on sol‐gel‐derived bioactive glasses in vitro,” J. Biomed. Mater. Res., vol. 28, no. 6, pp. 693–698, 1994.
[20] Q. Z. Chen and G. A. Thouas, “Fabrication and characterization of sol-gel derived 45S5 Bioglass®-ceramic scaffolds,” Acta Biomater., vol. 7, no. 10, pp. 3616–3626, 2011.
[21] Q. Guo and T. Wang, “Study on preparation and thermal properties of sodium nitrate/silica composite as shape-stabilized phase change material,” Thermochim. Acta, vol. 613, pp. 66–70, 2015.
[22] X. Fang, Q. Li, T. Yang, Z. Li, and Y. Zhu, “Preparation and characterization of glass foams for artificial floating island from waste glass and Li2CO3,” Constr. Build. Mater., vol. 134, pp. 358–363, 2017.
[23] Q. Zhang, F. He, H. Shu, Y. Qiao, S. Mei, M. Jin and J. Xie , “Preparation of high strength glass ceramic foams from waste cathode ray tube and germanium tailings,” Constr. Build. Mater., vol. 111, pp. 105–110, 2016.
[24] H. R. Swift, “Some Experiments on Crystal Growth and Solution in Glasses,” J. Am. Ceram. Soc., vol. 30, no. 6, pp. 165–169, 1947.
電子全文 電子全文(網際網路公開日期:20230901)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔