(3.239.33.139) 您好!臺灣時間:2021/03/02 15:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張騰元
研究生(外文):CHANG, TENG-YUAN
論文名稱:田口法最佳化回收拋光粉製備不含貴金屬低溫甲醇蒸氣重組觸媒之研究
論文名稱(外文):Using Taguchi method to optimize the fabrication of non-noble-metal low temperature methanol steam reforming catalyst with waste polishing powder
指導教授:余炳盛余炳盛引用關係
指導教授(外文):YU, BING-SHENG
口試委員:余炳盛江姿萱楊顯整邱德威王玉瑞
口試委員(外文):YU, BING-SHENGCHIANG, TZU-HSUANYANG, HSIEN-CHENGCHIU, TE-WEIWANG, YU-RUEI
口試日期:2020-07-08
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:資源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:93
中文關鍵詞:甲醇蒸氣重組氫氣觸媒田口法
外文關鍵詞:Methanol steam reformingHydrogenCatalystTaguchi method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:23
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氫能在眾多綠色能源中,是最受關注的原料之一,因氫氣具有高能量轉換效果、不具汙染性的特點,可以有效解決能源短缺的問題,但卻存在著不易儲存與運送的缺點。然而碳水化合物(如:甲烷、甲醇、乙醇)等因為具有較佳的氫氣轉換效率,因此可以透過碳水化合物重組產生氫氣來解決能源不足的問題。早期的甲醇蒸氣重組觸媒,大多使用貴金屬(如:鉑、釕、鈀等),但因為成本相對較高,故本研究使用過渡金屬與稀土元素作為觸媒製備時的原料。但因我國並未開採稀土礦產,必須仰賴進口。而拋光製程時會使用的稀土拋光粉中通常含有稀土化合物,如氧化鈰、氧化鑭等,會產生大量的廢棄拋光粉,且現今廢棄拋光粉大多會以掩埋或焚燒做處理,導致資源浪費,因此回收在利用拋光粉中的稀土元素,可以降低成本且可以使資源再利用。
本研究透過田口直交表L18(2^1x3^7)進行實驗,以Cu基觸媒為主添加多種元素,再利用甘胺酸-硝酸鹽(GNP)燃燒合成法製備觸媒,探討其對甲醇重組氫氣轉換率之影響。結果顯示,經由田口法規劃所製備之18組觸媒,在250°C時催化30分鐘平均轉換率為21.6%,催化2小時平均轉換率達到95.61%;在275°C時催化30分鐘平均轉換率達到100%,催化2小時平均轉換率達到100%。再經由田口變異分析最佳化配比所製成之觸媒,在250°C與275°C持溫24小時,觸媒經過24小時的催化轉換率仍為100%,故本研究製作之觸媒在250°C與275°C皆有達到提升觸媒催化效率與壽命性之目的。

Hydrogen energy is one of the received considerable attention energy sources among many green energy sources. Because Hydrogen has high energy conversion effect and non-polluting characteristics, can effectively solve the problem of energy shortage. However, the major disadvantage of hydrogen are storing and transporting. To figure out this shortcoming, hydrogen can be improved by reorganizing carbohydrates, and it also still reserve a high hydrogen conversion rate. In the early stage of methanol steam reforming catalysts, precious metals (such as platinum, ruthenium, palladium, etc.) were mostly used. Before, methanol steam reforming catalyst mostly used precious metals (such as platinum, ruthenium, palladium, etc.) . However the price of precious metals are high, so this experiment used transition metals and rare earth elements as raw materials for catalyst preparation. Although rare earth elements are cheaper than precious metal elements, but Taiwan does not mine rare earth minerals, it must rely on imports. However the rare earth polishing powder used in the polishing process usually contains rare earth compounds(such as cerium oxide, lanthanum oxide, etc. ) . However the rare earth polishing powder used in the polishing process usually contains rare earth compounds, such as cerium oxide, lanthanum oxide, etc. After polishing process a large amount of waste polishing powder is generated, and most of the current waste polishing powder is treated by burying or incineration, resulting in waste of resources. Therefore, recycling rare earth elements in the use of polishing powder can reduce costs and reuse resources.
In this study, using Taguchi L18(2^1x3^7) to experiment. a series of catalysts were prepared by the combustion synthesis method of glycine-nitrate combustion process (GNP) with Cu based catalyst as the main catalyst and various elements added. The results showed that the average conversion rate of 18 catalysts prepared by Taguchi method was 21.6% at 250°C for 30 minutes and 2 hours respectively The results show that the conversion rate of the catalyst is 95.61%; the average conversion rate of the catalyst is 100% in 30 minutes and 100% in 2 hours at 275°C. The conversion rate of the catalyst is still 100% after 24 hours of holding temperature at 250°C and 275°C by Taguchi variation analysis. Therefore, the catalyst prepared in this study can improve the catalytic efficiency and life of the catalyst at 250°C and 275°C The purpose of destiny.

目錄
摘要 i
Abstract ii
致謝 iv
目錄 v
表目錄 viii
圖目錄 x
第一章、緒論 1
1.1研究動機 1
1.2 研究目的 2
第二章、基礎理論與文獻回顧 3
2.1 燃料電池及其燃料 3
2.2 重組產氫 5
2.3 觸媒 6
2.3.1觸媒載體 6
2.3.2觸媒催化反應原理 8
2.3.3觸媒活性之衰退原因 9
2.3.4觸媒製備方法 11
2.4 甲醇蒸氣重組觸媒 12
2.4.1常見的甲醇蒸氣重組觸媒種類 12
2.4.2甲醇蒸氣重組觸媒元素之選擇 12
2.5 GNP燃燒合成法 17
2.6稀土拋光粉 19
2.7田口方法 21
2.7.1 田口方法的規劃 21
2.7.2 田口方法的實驗 22
2.7.3 田口方法的分析 24
2.7.4 田口方法的變異分析 26
第三章、實驗流程與實驗設備 30
3.1 研究方法及流程 30
3.2 田口L18直交表規畫 31
3.3 實驗藥品與簡介 34
3.4 觸媒的配製 35
3.4.1 廢拋光汙泥之酸溶 35
3.4.2 觸媒合成 36
3.4.3 觸媒擔體浸泡與煆燒 37
3.4.4 觸媒還原 38
3.5觸媒催化測試 39
3.5.1 H2檢測 39
3.5.2催化後氫氣產率檢測 40
3.6 實驗設備與分析儀器 41
3.6.1感應偶合電漿發射光譜儀 (ICP-OES) 41
3.6.2 電磁加熱攪拌機 42
3.6.3 高溫爐(Furnaces) 42
3.6.4 還原爐(Reduction Furnace) 43
3.6.5 X光繞射分析儀 44
3.6.6 甲醇水泵加熱爐 45
3.6.7 管狀爐(Tubular Furnace) 45
3.6.8 氣相層析儀(Gas Chromatography, GC) 46
第四章、實驗結果與討論 49
4.1 廢拋光汙泥分析 49
4.1.1 廢拋光汙泥X繞射分析 49
4.1.2 酸溶液化學分析 50
4.2甲醇蒸氣重組觸媒合成規劃及試驗 51
4.2.1 250°C觸媒氫氣轉換率之田口變異分析 53
4.2.2 275°C觸媒氫氣轉換率之田口變異分析 63
4.3 最佳化配比與預測 73
4.4 最佳化觸媒甲醇蒸氣重組產氫氣結果與比較 75
4.4.1 250°C甲醇蒸氣重組產氫氣最佳化結果 75
4.4.2 275°C甲醇蒸氣重組產氫氣最佳化結果 77
4.4.3最佳化觸媒進行甲醇蒸氣重組產氫氣比較 80
4.4.4水:甲醇=2:1最佳化觸媒250°C甲醇蒸氣重組結果 82
4.5 觸媒特性分析 84
4.5.1 XRD分析 84
4.5.2 氫氣程式升溫還原(H2-TPR)分析 85
第五章、結論與建議 86
參考文獻 88
[1]Pooya Tahay, Yasin Khani, Mohammad Jabari, Farzad Bahadoran, Nasser Safari, 2018, Highly porous monolith/ TiO2 supported Cu, Cu-Ni, Ru, and Pt catalysts in methanol steam reforming process for H2 generation, Applied Catalysis A, General, pp.44-53
[2]Haruka Mitani, Ya Xu, Toshiyuki Hirano, Masahiko Demura, Ryuji Tamura, 2017, Catalytic properties of Ni-Fe-Mg alloy nanoparticle catalysts for methanol decomposition, Catalysis Today, 281, pp.669-676.
[3]Jagoda Kuc, Santhosh Kumar Matam, Matthias Neumann, Songhak Yoon,Philipp Thiel, Marc Armbrüster, Anke Weidenkaff, 2015, Methanol steam reforming on LaCo1−x−yPdxZnyO3±δ, Catalysis Today, pp.258, 256-261.
[4]鄭耀宗等,1995,現場型磷酸燃料應用於大用戶之可行性研究。
[5]Fuel Cell Handbook,EG&G Technical Services,U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory, 2000.
[6]左德峻,2001,燃料電池之特性與運用,國家實驗研究院科學資料中心。
[7]曲新生,陳發林,呂錫民,1997,產氫與除氫技術,台北:五南書局。
[8]Lindström, B., Pettersson, L. J., & Menon, P. G., 2002, Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on γ-alumina for methanol reforming for fuel cell vehicles, Applied catalysis A: general, 234(1-2), pp.111-125.
[9]Cubeiro, M. L., & Fierro, J. L. G., 1998, Partial oxidation of methanol over supported palladium catalysts, Applied Catalysis A: General, 168(2),pp.307-322.
[10]Bae-Yinn Hwang, Subramanian Sakthinathan, Te-Wei Chiu, 2019, Production of hydrogen from steam reforming of methanol carried out by self-combusted CuCr1-xFexO2 (x=0-1) nanopowders catalyst, International Journal of Hydrogen Energy, pp.2848-2856.
[11]Yun-Chuan Pu, Shui-Rong Li, Shuai Yan, Xiao Huang, Duo Wang, Yue-Yuan Ye, Yun-Quan Liu, 2019, An improved Cu/ZnO catalyst promoted by Sc2O3 for hydrogen production from methanol reforming, Fuel, pp.607-615.
[12]Xianyun Liu, Jamil Toyir, Pilar Ramı´rez de la Piscina, Narcı´s Homs, 2017, Hydrogen production from methanol steam reforming over Al2O3- and ZrO2- modified CuOZnOGa2O3 catalysts, International Journal of Hydrogen Energy, pp.13704-13711.
[13]Ming-Chung Tsai, Jung-Hui Wang, Chia-Chieh Shen, Chuin-Tih Yeh, 2011, Promotion of a copper–zinc catalyst with rare earth for the steam reforming of methanol at low temperatures, Journal of Catalysis, pp.241-245.
[14]Cao, W., Chen, G., Li, S., & Yuan, Q., 2006, Methanol-steam reforming over a ZnO–Cr2O3/CeO2–ZrO2/Al2O3 catalyst. Chemical Engineering Journal, 119(2-3), pp.93-98.
[15]張金海, 1994,非均勻反應觸媒-特性與時效應用,台灣復文興業。
[16]楊筑鈞,2018,利用田口方法規劃並製備NH3轉化觸媒之研究,碩士論文,國立臺北科技大學資源工程研究所。
[17]黃沛軒,2003,以Cu金屬塗覆爐石處理氨氣之研究,碩士論文,國立中山大學環境工程研究所。
[18]A.A.Lytkina , N.V. Orekhova, M.M. Ermilova, A.B. Yaroslavtsev, 2018, The influence of the support composition and structure (MХZr1-XO2-δ) of bimetallic catalysts on the activity in methanol steam reforming, International Journal of Hydrogen Energy, pp.198-207.
[19]Yanqiu Lei, Yongming Luo, Xiaofeng Li, Jichang Lu, Zhanqiang Mei, Wen Peng, Ran Chen, Kezhen Chen, Dingkai Chen, Dedong He, 2018, The role of samarium on Cu/Al2O3 catalyst in the methanol steam reforming for hydrogen production, Catalysis Today, pp.162-168.
[20]Yasaman Mohtashami, Majid Taghizadeh, 2019, Performance of the ZrO2 promoted Cu-ZnO catalyst supported on acetic acid-treated MCM-41 in methanol steam reforming, International Journal of Hydrogen Energy, pp.5725-5738.
[21]Martin Khzouz, Evangelos I. Gkanas, Shangfeng Du, Joe Wood, 2018, Catalytic performance of Ni-Cu/Al2O3 for effective syngas production by methanol steam reforming, Fuel, pp.672-683.
[22]Shetian Liu, Katsumi Takahashi, Kazuo Uematsu, Muneo Ayabe, 2004, Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst: effects of the addition of a third metal component, Applied Catalysis A: General, pp.265-270.
[23]Vishwanath G. Deshmane, Sri Lanka Owen, Richard Y. Abrokwah, Debasish Kuila, 2015, Mesoporous nanocrystalline TiO2 supported metal (Cu, Co, Ni, Pd, Zn,and Sn) catalysts: Effect of metal-support interactions on steam reforming of methanol, Journal of Molecular Catalysis A: Chemical, pp.202-213.
[24]Jichang Lu, Xiaofeng Li, Sufang He, Caiyun Han, Gengping Wan,Yanqiu Lei, Ran Chen, Pan Liu, Kezhen Chen, Lei Zhang, Yongming Luo, 2017, Hydrogen production via methanol steam reforming over Ni-based catalysts: Influences of Lanthanum (La) addition and supports, International Journal of Hydrogen Energy, pp.3647-3657.
[25]Yidian Zhang, Shaopeng Guo, Zhenyu Tian, Yawen Zhaod, Yong Hao,2019 Experimental investigation of steam reforming of methanol over La2CuO4/CuZnAl-oxides nanocatalysts, Applied Energy 254/113022.
[26]Joan Papavasiliou, Alexandra Paxinou, Grzegorz Słowik, Stylianos Neophytides and George Avgouropoulos, 2018, Steam Reforming of Methanol over Nanostructured Pt/TiO2 and Pt/CeO2 Catalysts for Fuel Cell Applications, catal811544.
[27]Christoph Rameshan, Harald Lorenz, Marc Armbrüster, Igor Kasatkin, Bernhard Klötzer, Thomas Götsch, Kevin Ploner, Simon Penner, 2018, Impregnated and Co-precipitated Pd–Ga2O3, Pd–In2O3 and Pd–Ga2O3–In2O3 Catalysts: Influence of the Microstructure on the CO2 Selectivity in Methanol Steam Reforming, Catalysis Letters, pp.3062-3071.
[28]Abrokwah, Richard Y., Vishwanath G. Deshmane, and Debasish Kuila, 2016, Comparative performance of M-MCM-41 (M: Cu, Co, Ni, Pd, Zn and Sn) catalysts for steam reforming of methanol, Journal of Molecular Catalysis A: Chemical, pp. 10-20.
[29]A. Mastalir, B. Frankb, A. Szizybalski, H. Soerijantoa, A. Deshpande, M. Niederberger, R. Schomäcker, R. Schlögl, T. Ressler, 2015, Steam reforming of methanol over Cu/ZrO2/CeO2 catalysts: a kinetic study, Journal of Catalysis, pp.464-475.
[30]Arielle Cristina Fornari, Raphael Menechini Neto, Giane Gonçalves Lenzi, Onélia Aparecida Andreo dos Santos, Luiz Mario de Matos Jorge, 2017, Utilization of Sol-Gel CuO-ZnO-Al2O3 Catalysts in the Methanol Steam Reforming for Hydrogen Production, The Canadian Journal of Chemical Engineering, pp.2258-2271.
[31]Apanee Luengnaruemitchai, Chinchanop Pojanavaraphan, Achiraya Kumyam, Chachchaya Thunyaratchatanon, Erdogan Gulari 2019, Hydrogen production from the oxidative steam reforming of methanol over Au-Cu nanoparticles supported on Ce1-xZrxO2 in a fixed-bed reactor, International Journal of Hydrogen Energy,, pp.1686-1700.
[32]Yanh Shu-qian, He Jian-ping, Zhang Na, Sui Xiao-wei, Zhang Lei, Yang Zhan-xu, 2018, Effect of rare-earth element modification on the performance of Cu/ZnAl catalysts derived from hydrotalcite precursor in methanol steam reforming, Journal of Fuel Chemistry and Technology, pp.179-188.
[33]Omid Zahedi Tajrishi, Majid Taghizadeh, Afshini Dehghani Kiadehi, 2018, Methanol steam reforming in a microchannel reactor by Zn-, Ce- and Zr- modified mesoporous Cu/SBA-15 nanocatalyst, International Journal of Hydrogen Energy, pp.14103-14120.
[34]Cheng-Chun Chang, Ching-Tu Chang, Shu-Jen Chiang, Biing-Jye Liaw, Yin-Zu Chen, 2010, Oxidative steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts, International Journal of Hydrogen Energy, pp.7675-7683.
[35]Schubert, U., Synthesis of inorganic materials, New York: John Wiley & Sons, 2012.
[36]Arvind Varma, Alexander S., Mukasyan, 2004, Combustion Synthesis of Advanced Materials: Fundamentals and Applications, Korean J. Chem. Eng, pp.527-536.
[37]Shin, H. C., Lee, K. R., Park, S., Jung, C. H. and Kim, S. J., 1996, Preparation of La0. 84Sr0.16CrO3 powders by pH-controlled glycine-nitrate process, Japanese journal of applied physics, pp. L996-L998.
[38]J Yuan Jia, Jiang Liua, Tianmin He, Ligong Cong, Jinxia Wang, Wenhui Su, 2003, Single intermedium-temperature SOFC prepared by glycine–nitrate process. Journal of alloys and compounds, pp. 257-262.
[39]程昌明,2005,氧化鈰基拋光粉的製備及性能表徵,碩士論文,中國南昌大學。
[40]黃紹東、劉鈴聲、李學舜、李培忠、郭殿東,2002,光學玻璃拋光用稀土拋光粉的製備,稀土,第23卷,第6期。
[41]陳又瑋,2008,含鈰污泥熱熔處理之研究,碩士論文,國立屏東科技大學。
[42]薛郁樺,2010,鈰污泥酸溶之研究,碩士論文,國立屏東科技大學環境工程與科學系所。
[43]李輝煌,2012,田口方法─品質設計的原理與實務,高立圖書有限公司。
[44]盧柏彰,2018,利用田口法實驗設計以複製模板法合成多孔陶瓷觸媒擔體材料,碩士論文,國立臺北科技大學資源工程研究所。
[45]Xiong Liang, Yawei Li, Jun Liu, Shaobai Sang, Yuanyuan Chen, Benwen Li, Christos G.Aneziris, 2017, Improvement of the mechanical properties of SiC reticulated porous ceramics with optimized three-layered struts for porous media combustion, Ceramics International, pp.3741-347.
[46]Muflih A. Adnan, Arif Hidayat, Oluwole O. Ajumobi, Sagir Adamu, Oki Muraza, Mohammad M. Hossain, 2018, Fluidizable Fe−Co/Ce−ZrO2 Catalysts for Steam Reforming of Toluene as a Tar Surrogate in Biomass Gasification, Energy Fuels, pp.12833-12842.
[47]Osamu Amano, Akira Sasahira, Yuko Kani, Kuniyoshi Hoshino, Masakatsu Aoi, Fumio Kawamura., 2004, Solubility of lanthanide fluorides in nitric acid solution in the dissolution process of FLUOREX reprocessing system. Journal of Nuclear Science and Technology, pp. 55−60.
[48]洪輔佐,2019,以田口方法規劃並最佳化不含貴金屬甲醇蒸氣重組觸媒製備之研究,碩士論文,國立臺北科技大學資源工程研究所。
[49]周坤利,2012,超微細CuO/CeO2觸媒於富氫下一氧化碳選擇氧化之研究,碩士論文,義守大學生物技術與化學工程驗究所。
[50]Te-Wei Chiu, Ruei-Teng Hong, Bing-Sheng Yu, Yung-Han Huang, Satoshi Kameoka, An-Pang Tsai, 2014, Improving steam-reforming performance by nanopowdering CuCrO2, International Journal of Hydrogen Energy, pp.14222-14226.


電子全文 電子全文(網際網路公開日期:20220731)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔