(3.239.33.139) 您好!臺灣時間:2021/02/27 01:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:顧昌倫
研究生(外文):GUH, CHANG-LUN
論文名稱:製成TiO2基材光陽極的陰極保護特性與其在離岸風機防蝕之應用
論文名稱(外文):Cathodic Protection of TiO2-Based Photoanodes and its Anticorrosion Effect on Offshore Wind Structures
指導教授:蔡子萱蔡子萱引用關係
指導教授(外文):TSAI, TZU-HSUAN
口試委員:蔡子萱吳永富許寧逸
口試委員(外文):TSAI, TZU-HSUANWU, YUNG-FUHSU, NING-YIH
口試日期:2020-07-06
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:資源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:95
中文關鍵詞:不鏽鋼光電化學陰極保護腐蝕防蝕塗層離岸風機
外文關鍵詞:Stainless steelPhotoelectrochemistryCathodic protectionCorrosionAnti-corrosion coatingOffshore wind structures
相關次數:
  • 被引用被引用:0
  • 點閱點閱:25
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究自製TiO2及TiO2/WO3混合塗料,將塗料披覆在FTO導電玻璃上經退火處理製成電極,並分析該電極照光下對304不鏽鋼陰極保護的效果及其在離岸風機基座防蝕應用的可行性。實驗以場發射掃描式電子顯微鏡、X射線繞射儀、紫外光/可見光光譜儀、熱重分析儀分別分析電極的表面形貌、晶相結構、光學特性以及各成分在不同溫度下的變化;最後,以電化學技術分析電極對304不鏽鋼的光電化學陰極保護效果。實驗結果顯示,TiO2/WO3電極在停止照光後仍可對304不鏽鋼進行陰極保護,且隨著WO3比例增加和照光時間增長,陰極保護的延續性隨之提升。在TiO2:WO3 = 1:1且照光時間約1小時的條件下,停止照光後的陰極保護力可持續6小時。此外,應用於離岸風機鍍鋅鋼材的陰極保護時,在鋅層溶解後鋼材電位約在-0.45V vs. Ag/AgCl,將之連接TiO2電極並照光後其電位下降至-0.8V vs. Ag/AgCl,顯示TiO2電極在鋅層受腐蝕破壞後仍可對鋼材進行陰極保護,具有無犧牲性的陽極特質,能有效應用於離岸風機主構件的防蝕。
In this study, TiO2 or TiO2/WO3 slurry was coated on FTO glass, which followed by annealing process in order to fabricate electrode. The cathodic protection performance of the electrode on 304 stainless steel and its anticorrosion effect on offshore wind structures were investigated. The surface morphology of TiO2 or TiO2/WO3 electrode was judged by Field Emission Scanning Electron Microscope (FE-SEM), while the crystal structures were determined with X-ray diffraction (XRD). The absorption of the electrode at different wavelengths and the mass loss of the slurry with temperature were analyzed with Ultraviolet–Visible Spectroscopy (UV-VIS) and Thermogravimetry (TGA), respectively. Photoelectrochemical analyzsis were carried out to determine the cathodic protection ability of the electrodes on 304 stainless steel. Experimental results showed that TiO2/WO3 electrode exihibited longer cathodic protection duration comparing to TiO2 alone after illumination stopped, and the duration is proportional to WO3 content as well as illumination time. When TiO2/WO3 electrode of 1:1 ratio was under 1 hour illumination, we observed approximately 6 hours of cathodic protection in darkness. As for the offshore wind structures experiment, the potential of steel after zinc layer being corroded was -0.45V vs. Ag/AgCl, with -0.8V vs. Ag/AgCl when coupling with TiO2 electrode under illumination. Significantly lower potential of steel indicated that TiO2 electrode possesses outstanding anticorrosion effect on the foundation of offshore wind structures after zinc layers being corroded.
摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1腐蝕與腐蝕的防治 1
1.2光電陰極防蝕 3
1.3離岸風機發展與其腐蝕危害 5
1.4研究動機 7
第二章 文獻回顧 9
2.1 TiO2電極的製備方法 9
2.2 TiO2塗料製備 13
2.3電洞捕捉劑的影響 20
2.4 TiO2結合儲能材料的特性 21
第三章 基本原理 29
3.1腐蝕與光電陰極防蝕 29
3.1.1金屬腐蝕與速率 29
3.1.2陰極防蝕與光電陰極防蝕 33
3.2電極特性與光電化學分析 36
3.2.1熱重分析 36
3.2.2紫外光/可見光分光光譜分析 37
3.2.3計時電位與計時電流分析 38
3.2.4 Tafel曲線分析 40
第四章 實驗設備與方法 42
4.1實驗藥品與材料 42
4.2實驗儀器與設備 43
4.3實驗方法 43
4.3.1電極特性分析 45
4.3.2光電化學分析 46
第五章 結果與討論 50
5.1乙基纖維素含量對TiO2電極的影響 50
5.1.1 SEM/XRD/TGA分析 50
5.1.2光電化學分析 53
5.2退火溫度對TiO2電極的影響 56
5.2.1 SEM/XRD分析 57
5.2.2光電化學分析 59
5.3電洞捕捉劑對TiO2電極的影響 64
5.3.1電洞捕捉劑種類的影響 64
5.3.2電洞捕捉劑濃度的影響 68
5.4 TiO2/WO3電極陰極保護特性 73
5.4.1 TiO2/WO3電極特性 73
5.4.2 TiO2/WO3配比分析 77
5.4.3照光時間分析 80
5.5光電化學陰極防蝕應用於離岸風機 82
5.5.1鍍鋅鋼材腐蝕偵測 82
5.5.2 TiO2電極對鍍鋅鋼材影響 84
第六章 結論 88
參考文獻 89
符號彙整 95

[1] 曹楚南 (2001),悄悄進行的破壞,台北市:牛頓出版公司。
[2] 中時電子報,檢自https://www.cna.com.tw/news/firstnews/201910030370.aspx。
[3] Koch, Gerhardus et al. (2013). International Measures of Prevention, Application, and Economics of Corrosion Technologies Study. NACE International.
[4] Ahmad, Zaki (2006). Principles of Corrosion Engineering and Corrosion Control. Oxford: Butterworth-Heinemann.
[5] 盧泓,蔡嘉恩 (2013),二氧化鈦光觸媒的應用,環保技術與法規資訊電子報,經濟部。
[6] Zhang, T., Liu, Y., Liang, J., & Wang, D. (2017). Enhancement of photoelectrochemical and photocathodic protection properties of TiO2 nanotube arrays by simple surface UV treatment. Applied Surface Science, 394, 440-445.
[7] Arunchandran, C., Ramya, S., George, R. P., & Kamachi Mudali, U. (2013). Corrosion inhibitor storage and release property of TiO2 nanotube powder synthesized by rapid breakdown anodization method. Materials Research Bulletin, 48(2), 635-639.
[8] Lei, C. X., Zhou, H., Wang, C., & Feng, Z. D. (2013). Self-assembly of ordered mesoporous TiO2 thin films as photoanodes for cathodic protection of stainless steel. Electrochimica Acta, 87, 245-249.
[9] Liu, T. C., Wu, C. C., Huang, C. H., & Chen, C. M. (2016). Effects of Ethyl Cellulose on Performance of Titania Photoanode for Dye-sensitized Solar Cells. Journal of Electronic Materials, 45.
[10] Dhungel, S. K., & Park, J. G. (2010). Optimization of paste formulation for TiO2 nanoparticles with wide range of size distribution for its application in dye sensitized solar cells. Renewable Energy, 35(12), 2776-2780.
[11] Wang, H., Su, C., Wu, C., Tsai, H., & Li, W. (2014). The effect of ethyl cellulose on TiO2 pastes for DSSCs application. International Journal of Nanotechnology, 11, 1138.
[12] R. Fujisawa, S. T. (1995). Photo-Protection of 304 Stainless Steel with TiO2 Coating. Materials Science Forum, 185-188, 1070-1075.
[13] Luo, H., Shen, L., Rui, K., Li, H., & Zhang, X. (2013). Carbon coated Li4Ti5O12 nanorods as superior anode material for high rate lithium ion batteries. Journal of Alloys and Compounds, 572, 37-42.
[14] Offshore wind outlook 2019. International energy agency. 檢自https://www.iea.org/ reports/offshore-wind-outlook-2019。
[15] Price, S. J., & Figueira, R. B. (2017). Corrosion Protection Systems and Fatigue Corrosion in Offshore Wind Structures: Current Status and Future Perspectives. Coatings, 7(2).
[16] 檢自https://www.savcor.com/steel。
[17] Wang, D., Yu, B., Zhou, F., Wang, C., & Liu, W. (2009). Synthesis and characterization of anatase TiO2 nanotubes and their use in dye-sensitized solar cells. Materials Chemistry and Physics, 113(2), 602-606.
[18] Zhang, Q., & Gao, L. (2003). Preparation of Oxide Nanocrystals with Tunable Morphologies by the Moderate Hydrothermal Method:  Insights from Rutile TiO2. Langmuir, 19(3), 967-971.
[19] Liang, Y., Sun, S., Deng, T., Ding, H., Chen, W., & Chen, Y. (2018). The Preparation of TiO2 Film by the Sol-Gel Method and Evaluation of Its Self-Cleaning Property. Materials, 11, 450.
[20] White, L., Kim, M., Zhang, J., Kraemer, S., Yavuz, C., Moskovits, M., . . . Stucky, G. (2013). Phosphorus stimulated unidirectional growth of TiO2 nanostructures. J. Mater. Chem. A, 1, 6091-6098.
[21] Shinde, P. S., & Bhosale, C. H. (2008). Properties of chemical vapour deposited nanocrystalline TiO2 thin films and their use in dye-sensitized solar cells. Journal of Analytical and Applied Pyrolysis, 82(1), 83-88.
[22] Ryu, W. H., & Park, C. J. (2008). Synthesis of Highly Ordered TiO2 Nanotube in Malonic Acid Solution by Anodization. Journal of nanoscience and nanotechnology, 8, 5467-5470.
[23] Ito, S., Chen, P., Comte, P., Nazeeruddin, M. K., Liska, P., Péchy, P., & Grätzel, M. (2007). Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. Progress in Photovoltaics: Research and Applications, 15(7), 603-612.
[24] Ma, T., Tetsuya, K., Akiyama, M., Inoue, K., Tsunematsu, S., Yao, K., . . . Abe, E. (2003). Preparation and Properties of Nanostructured TiO2 Electrode by a Polymer Organic-Medium Screen-Printing Technique. Electrochemistry Communications, 5, 369-372.
[25] Ma, L., Liu, M., Peng, T., Fan, K., Lu, L., & Dai, K. (2009). Fabrication and properties of meso-macroporous electrodes screen-printed from mesoporous titania nanoparticles for dye-sensitized solar cells. Materials Chemistry and Physics, 118(2), 477-483.
[26] Kang, M.-S., Yang, Y., Jee, S.-S., Kwon, S.-J., Lee, E. S., & Bae, J.-Y. (2011). Enhanced photovoltaic performances of dye-sensitized solar cell using self-charring phosphate ester surfactant. Materials Chemistry and Physics, 130(1), 203-210.
[27] Bang, H. G., Chung, J. K., Jung, R. Y., & Park, S. Y. (2012). Effect of acetic acid in TiO2 paste on the performance of dye-sensitized solar cells. Ceramics International, 38, S511-S515.
[28] Park, H., Kim, K. Y., & Choi, W. (2002). Photoelectrochemical Approach for Metal Corrosion Prevention Using a Semiconductor Photoanode. The Journal of Physical Chemistry B, 106(18), 4775-4781.
[29] Ohko, Y., Saitoh, S., Tatsuma, T., & Fujishima, A. (2001). Photoelectrochemical Anticorrosion and Self-Cleaning Effects of a TiO2 Coating for Type 304 Stainless Steel. Journal of The Electrochemical Society, 148, B24-B28.
[30] Tatsuma, T., Saitoh, S., Ohko, Y., & Fujishima, A. (2001). TiO2−WO3 Photoelectrochemical Anticorrosion System with an Energy Storage Ability. Chemistry of Materials, 13(9), 2838-2842.
[31] Liang, Y., Guan, Z. C., Wang, H. P., & Du, R. G. (2017). Enhanced photoelectrochemical anticorrosion performance of WO3/TiO2 nanotube composite films formed by anodization and electrodeposition. Electrochemistry Communications, 77, 120-123.
[32] Park, H., Bak, A., Jeon, T. H., Kim, S., & Choi, W. (2012). Photo-chargeable and dischargeable TiO2 and WO3 heterojunction electrodes. Applied Catalysis B: Environmental, 115-116, 74-80.
[33] Sun, W., Cui, S., Wei, N., Chen, S., Liu, Y., & Wang, D. (2018). Hierarchical WO3/TiO2 nanotube nanocomposites for efficient photocathodic protection of 304 stainless steel under visible light. Journal of Alloys and Compounds, 749, 741-749.
[34] Takahashi, Y., Ngaotrakanwiwat, P., & Tatsuma, T. (2004). Energy storage TiO2–MoO3 photocatalysts. Electrochimica Acta, 49(12), 2025-2029.
[35] Ngaotrakanwiwat, P., Saitoh, S., Ohko, Y., Tatsuma, T., & Fujishima, A. (2003). TiO2–Phosphotungstic Acid Photocatalysis System with an Energy Storage Ability. Journal of The Electrochemical Society - J ELECTROCHEM SOC, 150.
[36] Alwan, A., Fayyadh, S., & A. Khalid, E. (2019). A REVIEW: BEHAVIOR OF PITTING CORROSION IN MANUFACTURING FOOD EQUIPMENT. The Iraqi Journal of Agricultural Sciences, 19, 1001-1007.
[37] Denny A.Jones (1996). Principles and Prevention of Corrosion. New Jersey: Prentice-Hall, Inc.
[38] El-Alem, A., Azmy, A., & Hossam-Eldin, A. (2013). Design of a Cathodic Protection System to Prevent Corrosion of Metallic Structures using Hybrid Renewable Energy Sources. ERJ. Engineering Research Journal, 36.
[39] Burnside, S., Moser, J. E., Brooks, K., Grätzel, M., & Cahen, D. (1999). Nanocrystalline Mesoporous Strontium Titanate as Photoelectrode Material for Photosensitized Solar Devices:  Increasing Photovoltage through Flatband Potential Engineering. The Journal of Physical Chemistry B, 103(43), 9328-9332.
[40] Chiu, S. C., & Li, Y. Y. (2009). SiC Nanowires in Large Quantities: Synthesis, Band Gap Characterization, and Photoluminescence Properties. Journal of Crystal Growth, 311, 1036-1041.
[41] Gorczyca, I., Suski, T., Christensen, N., & Svane, A. (2010). Limitations to band gap tuning in nitride semiconductor alloys. Applied Physics Letters, 96, 101907-101907.
[42] Xu, Y., & Schoonen, M. A. A. (2000). The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist, 85(3-4), 543-556.
[43] Wunderlich, B. (2001). Thermal Analysis. In K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, & P. Veyssière (Eds.), Encyclopedia of Materials: Science and Technology (pp. 9134-9141). Oxford: Elsevier.
[44] Shao, X., Xin, W., & Yin, X. (2017). Hydrothermal synthesis of ZnO quantum dot/KNb3O8 nanosheet photocatalysts for reducing carbon dioxide to methanol. Beilstein Journal of Nanotechnology, 8, 2264-2270.
[45] Sun, M., & Chen, Z. (2015). Enhanced Photoelectrochemical Cathodic Protection Performance of the In2O3/TiO2 Composite. Journal of The Electrochemical Society, 162, C96-C104.
[46] Paul Monk (2001). Fundamentals of Electroanalytical Chemistry. New York: John Wiley & Sons Inc.
[47] 吳永富 (2018),電化學工程原理。台北市:五南圖書出版有限公司。
[48] Berradja, A. (2019). Electrochemical Techniques for Corrosion and Tribocorrosion Monitoring: Methods for the Assessment of Corrosion Rates. In.
[49] Allen J. Bard, Larry R. Faulkner (2000). Electrochemical Methods: Fundamentals and Applications. New York: John Wiley & Sons Inc.
[50] Kusdianto, K., Jiang, D., Kubo, M., & Shimada, M. (2018). Effect of annealing temperature on the photocatalytic activity of Ag–TiO2 nanocomposite films by one-step gas-phase deposition. Materials Research Bulletin, 97, 497-505.
[51] van de Lagemaat, J., Benkstein, K. D., & Frank, A. J. (2001). Relation between Particle Coordination Number and Porosity in Nanoparticle Films:  Implications to Dye-Sensitized Solar Cells. The Journal of Physical Chemistry B, 105(50), 12433-12436.
[52] Hanaor, D. A. H., & Sorrell, C. C. (2011). Review of the anatase to rutile phase transformation. Journal of Materials Science, 46(4), 855-874.
[53] Nakaruk, A., Lin, C. Y., Perera, D., & Sorrell, C. (2010). Effect of annealing temperature on titania thin films prepared by spin coating. Journal of Sol-gel Science and Technology - J SOL-GEL SCI TECHNOL, 55, 328-334.
[54] Park, N.-G., van de Lagemaat, J., & Frank, A. J. (2000). Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells. The Journal of Physical Chemistry B, 104.

電子全文 電子全文(網際網路公開日期:20250824)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔