(3.238.7.202) 您好!臺灣時間:2021/03/04 21:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:田富全
研究生(外文):TIAN, FU-QUAN
論文名稱:水熱法製備次微米線狀氧化鎳鋅之研究
論文名稱(外文):Study on the Preparation of Submicron Nickel-Zinc Oxide Wire by Hydrothermal Method
指導教授:陳志恆陳志恆引用關係
指導教授(外文):CHEN, JYH-HERNG
口試委員:陳志恆林景崎徐治平周正堂陳彥亨
口試委員(外文):CHEN, JYH-HERNGLIN, JING-QIXU, ZHI-PINGZHOU, ZHENG-TANGCHEN, YAN-HENG
口試日期:2020-07-21
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:資源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:127
中文關鍵詞:水熱法氧化鎳鋅次微米線超級電容
外文關鍵詞:HydrothermalNickel-Zinc OxideSuper capacitor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:30
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
永續發展的能源生產、存儲和轉換,是近年來所有研究的最優先方向。過去人們開發了許多高效的能量存儲方法,例如超級電容器,鋰離子電池和太陽能電池等等。超級電容具有許多優點。包含循環壽命長、充放電時間短和高功率密度。
本研究以水熱法分別製作氧化鎳線、氧化線鋅和氧化鎳鋅線。以草酸鈉作為沉澱劑,聚乙二醇作為分子模板,再以高溫爐進行熱處理來得到氧化金屬線。
在實驗結果中發現,草酸鈉和分子模板的添加量,對於實驗最終的形貌會有很大的影響。氧化鎳線最佳配比。硝酸鎳莫耳濃度=0.028 M,草酸根和鎳離子莫耳比=1:1,聚乙二醇與硝酸鎳重量比=1:1。氧化鋅線最佳配比。醋酸鋅莫耳濃度=0.038 M,草酸根和鋅離子莫耳比=1:1,聚乙二醇與醋酸鋅重量比=1:1。氧化鎳鋅線最佳配比。硝酸鎳莫耳濃度=0.028 M,醋酸鋅莫耳濃度=0.014 M,草酸根和鎳離子莫耳比=1:1,聚乙二醇與硝酸鎳醋酸鋅總重量比=1:1。

Sustainable development of energy production, storage and conversion is the highest priority of all research in recent years. In order to deal with the problems caused by the energy crisis, many efficient energy storage methods have been developed in the past, such as super capacitors, lithium-ion batteries, and solar cells. As one of the energy storage devices, super capacitors have many advantages. Including long cycle life, short charge and discharge time and high power density. The selection of electrode materials plays a very important role in the actual performance of super capacitors.
In this study, a hydrothermal method was used to prepare nickel-zinc oxide submicron wires as the material for supercapacitors. The nickel oxide wire, the zinc oxide wire and the nickel zinc oxide wire were produced by the hydrothermal method. Sodium oxalate is used as precipitant. Polyethylene glycol serves as a molecular template. Heat treatment in a high-temperature furnace was used to obtain oxide metal wires.
It is found that when the metal oxide wire is prepared by hydrothermal method, the addition amount of sodium oxalate and molecular template will have a great influence on the final morphology of the experiment. For the preparation of sub-micron nickel oxide wire, the best preparation parameters are: molar concentration of nickel nitrate = 0.028 M, molar ratio of oxalate to nickel ion = 1:1, weight ratio of polyethylene glycol to nickel nitrate = 1:1. For the preparation of sub-micron zinc oxide wire, the best preparation parameters are: concentration of zinc acetate molar = 0.038 M, molar ratio of oxalate to zinc ion = 1:1, weight ratio of polyethylene glycol to zinc acetate = 1:1. For the preparation of sub-micron nickel-zinc oxide wire, the best preparation parameters are: molar concentration of nickel nitrate = 0.028 M, concentration of zinc acetate molar = 0.0114 M, molar ratio of oxalate to nickel ion = 1:1, total weight ratio of polyethylene glycol to nickel nitrate and zinc acetate = 1:1.
摘要 i
Abstract ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 x
第一章緒論 1
1.1研究動機與目的 1
第二章文獻回顧 2
2.1氧化鎳/氧化鋅材料 2
2.2金屬氧化物粉體製備方法 3
2.2.1溶膠凝膠法 3
2.2.2沉澱法 3
2.2.3微乳液合成法 4
2.2.4水熱法 4
2.3氧化鎳製備方法 5
2.4氧化鋅製備方法 11
2.5氧化鎳/氧化鋅材料的製備方法 13
第三章研究方法與實驗 16
3.1研究方法. 16
3.1.1線狀氧化鎳研究方法 16
3.1.2線狀氧化鋅研究方法 17
3.1.3線狀氧化鎳鋅研究方法 18
3.2實驗藥品 19
3.3實驗及分析儀器 20
3.4實驗流程 21
3.5實驗步驟 22
3.5.1製備氧化鎳線 22
3.5.2製備氧化鋅線 24
3.5.3製備氧化鎳鋅線 26
第四章結果與討論 28
4.1水熱法製備次微米氧化鎳線 28
4.1.1草酸添加量對氧化鎳形貌的影響 29
4.1.2聚乙二醇(PEG6000)添加量對氧化鎳形貌的影響 38
4.1.3鍛燒溫度對氧化鎳形貌與結晶性的影響 47
4.2水熱法製備次微米氧化鋅線 57
4.2.1草酸添加量對氧化鋅形貌的影響 58
4.2.2聚乙二醇(PEG6000)添加量對氧化鋅形貌的影響 67
4.2.3鍛燒溫度對氧化鋅結晶性與形貌的影響 76
4.3水熱法製備次微米線狀氧化鎳鋅 86
4.3.1草酸添加量對氧化鎳鋅形貌的影響 86
4.3.2聚乙二醇(PEG6000)添加量對氧化鎳鋅形貌的影響 105
4.3.3鍛燒溫度對氧化鎳鋅結晶性與形貌的影響 114
第五章結論 124
5.1結論 124
5.2建議 124
參考文獻 125
1.D. Zhu amd Y. Shao, “NiO/ZnO Nanocomposite as Electrode Material for Supercapacitors,” International Journal of Electrochemical Science, Vol.13, 2018, pp.3601-3612.
2.P. Anandhi, V. J. Kumar amd S. Harikrishnan, “Preparation and enhanced capacitive behavior of Ni-ZnO nanocomposite as electrode for supercapacitor,” Materials Today: Proceedings, Vol.9, 2019, pp361-370.
3.陳佳文,以氧化鎳摻雜碳黑製備超級電容器電極之研究,碩士論文,正修科技大學,高雄,2013。
4.A. Atkinson and R. I. Taylor, “The self-diffusion of Ni in NiO and its relevance to the oxidation of Ni,” Journal of Materials Science, Vol.13, 1978, pp.427-432.
5.張翔,以草酸鋅為前驅物成長氧化鋅一維材料,碩士論文,台灣科技大學,台北,2010。
6.Y. Huang, Y. Zhang, S. Lin, L. Yan, R. Cao, R. Yang and X. Liang, “Sol-gel synthesis of NiO nanoparticles doped sodium borosilicate glass with third-order nonlinear optical properties,” Journal of Alloys and Compounds, Vol.7, 2016, pp.564-570.
7.J. Zhao, Y. Tan, K. Su, J. Zhao, C. Yang, L. Sang, H. Lu and J. Chen, “A facile homogeneous precipitation synthesis of NiO nanosheets and their applications in water treatment,” Applied Surface Science, Vol.337, 2015, pp.111-117.
8.Y. Du, W. Wang, X. Li, J. Zhao, J. Ma, Y. Liu and G. Lu, “Preparation of NiO nanoparticles in microemulsion and its gas sensing performance,” Materials Letters, Vol.68, 2012, pp.168-170.
9.R. Miao and W. Zeng, “SDS-assisted hydrothermal synthesis of NiO flake -flower architectures with enhanced gas-sensing properties,” Applied Surface Science, Vol.384, 2016, pp.304-310.
10.Y. Zhang and W. Zeng, “New insight into gas sensing performance of nanoneedle-assembled and nanosheet-assembled hierarchical NiO nanoflowers,” Materials Letters, Vol.195, 2017, pp.217-219.
11.G. Chen, H. Guan, C. Dong, X. Xiao and Y. Wang, “Effect of calcination temperatures on the electrochemical performances of nickel oxide/reduction graphene oxide(NiO/RGO) composites synthesized by hydrothermal method,” Journal of Physics and Chemistry of Solids, Vol.98, 2016, pp.209-219.
12.R. Miao, W. Zeng and Q. Gao, “SDS-assisted hydrothermal synthesis of NiO flake-flower architectures with enhanced gas-sensing properties,” Applied Surface Science, Vol.384, 2016, pp.304-310.
13.L. Wu, Y. Wu, H. Wei, Y. Shi and C. Hu, “Synthesis and characteristics of NiO nanowire by a solution method,” Materials Letters, Vol.58, 2004, pp.2700-2703.
14.H. Pang, Q. Lu, Y. Zhang, Y. Li and F. Gao, “Selective synthesis of nickel oxide nanowires and length effect on their electrochemical properties,” Nanoscale, Vol.2, 2010, pp.920-922.
15.I. Jung, J. Choi and Y. Tak, “Nickel oxalate nanostructures for supercapacitors,” Journal of Materials Chemistry, Vol.20, 2010, pp.6164-6169.
16.L. Zhu, Y. Li and W. Zeng, “UV-enhanced ethanol sensor based on nanorod-assembled flower-like ZnO,” Physica E, Vol.94, 2017, pp.123-125.
17.S. Zhao, Y. Shen, X. Yan, P. Zhou, Y. Yin, R. Lu, C. Han, B. Cui and D. Wei, “Complex-surfactant-assisted hydrothermal synthesis of one-dimensional ZnO nanorods for high-performance ethanol gas sensor,” Sensors & Actuators: B. Chemical, Vol.286, 2019, pp.501-511.
18.S. Yasmeen, F. Iqbal, T. Munawar, M. Nawaz, M. Asghar and A. Hussain, “Synthesis, structural and optical analysis of surfactant assisted ZnO–NiO nanocomposites prepared by homogeneous precipitation method,” Ceramics International, Vol.45, 2019, pp.17859-17873.
19.L. Zhou, W. Zeng and Y. Li, “A facile one-step hydrothermal synthesis of a novel NiO/ZnO nanorod composite and its enhanced ethanol sensing property,” Materials Letters, Vol.254, 2019, pp.92-95.
20.L. Zhu, W. Zeng, J. Yang and Y. Li, “One-step hydrothermal fabrication of nanosheet-assembled NiO/ZnO microflower and its ethanol sensing property,” Ceramics International, Vol.44, 2018, pp.19825-19830.
電子全文 電子全文(網際網路公開日期:20250824)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔