(54.236.58.220) 您好!臺灣時間:2021/03/06 23:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:BHUVANENTHIRAN MUTHARANI
研究生(外文):BHUVANENTHIRAN MUTHARANI
論文名稱:混合熱響應型導電聚合物微凝膠的合成,用於開發溫度可逆的“開-關”開關式電化學傳感器
論文名稱(外文):Synthesis of Hybrid Thermo-Responsive Conductive Polymer Microgels for the Development of Temperature-Enabled Reversible “On-Off” Switch-like Electrochemical Sensors
指導教授:陳生明
指導教授(外文):CHEN, SHEN-MING
口試委員:翁文慧呂光烈鐘仁傑曾添文駱碧秀陳生明
口試委員(外文):WENG, WEN-HUILU, KUANG-LIEHCHUNG, REN-JEIMUN, TSENG-TIANLOU, BIH-SHOWCHEN, SHEN-MING
口試日期:2020-07-10
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:能源與光電材料專班(EOMP)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:155
中文關鍵詞:熱敏聚合物導電聚合物雜化複合材料氧化石墨烯多壁碳納米管聚合方法開關式電化學傳感器
外文關鍵詞:Thermo-responsive polymerConducting polymerHybrid materialGraphene oxideMultiwalled carbon nanotubespolymerization methodSwitch-like electrochemical sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:18
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,在熱響應電催化領域中,刺激響應之材料藉著其具特別的溫度靈敏性挑起了大眾的興趣。尤其是「通路-斷路」的開關性質創造了創新的概念與設計,更提高熱響應性及聚合物的電催化活性。導電聚合物、碳材料和過渡金屬奈米粒子插入到微凝膠聚合物中已廣泛應用於增強微凝膠的電導率。在這類研究的促進之下,我們已經將熱響應性聚合物、導電聚合物、碳材料和過渡金屬應用於熱響應型電化學感測器的電極材料。因此,我們進行了由熱敏PNIPAM和導電PEDOT所組成的導電微凝膠膜。該組成的感測器在5-氟尿嘧啶 (5-FU) 的檢測中顯示其有良好的熱敏性以及具備可逆的切換性。
提出PNIPAM-PEDOT在40°C時5-FU具15 nM的最低檢測限。在實際樣品分析中,展現了PNIPAM-PEDOT在人血清樣品中5-FU檢測的可再現範圍。(ii)合成出由熱響應性聚合物PNIPAM、導電性聚合物PANI及銅離子所組成的PNIPAM/PANI-Cu,並將其作為高效能的熱響應可逆電催化劑,用於電化學檢測除草劑中的氯苯芬(AFN)。由熱響應聚合物所修飾的感測器展現出可逆的「通路-斷路」電化學行為,並通過控制磷酸鹽緩衝液的溫度可檢測AFN在PNIPAM/PANI-Cu/GCE上的AFN的伏安表現。
提出的感測器具有兩個線性範圍(0.01-10 µM and 18-76 µM),最低檢測下限為0.009 µM。 該複合膜可用於測定湖水樣品中的AFN,且具有很好的結果。(iii)在本研究中,將可生物降解且具親水性之聚(N-乙烯基己內酰胺) (PVCL)固定於GRO (GRO-PVCL)表面上,建立了由氧化石墨烯(GRO)為載體的熱響應型智慧催化材料。開發GRO-PVCL作為載體逤製成的鈀催化劑(Pd / GRO-PVCL)用於進行電化學還原替扎尼定(TZN)的電極材料。通過增加表面積、GRO優異的電子轉移效果、電化學催化能力與PVCL的特性相互結合,證明由溫感觸發的TZN電極材料具有可逆電催化效果以及更高的靈敏度。 Pd和GRO-PVCL之間的交互作用對Pd / GRO-PVCL具有協同作用,改善了TZN的電催化活性。用Pd / GRO-PVCL修飾的電極對TZN的檢測範圍為0.02至276 µM,在40℃下的檢測下限為0.0015 µM。 Pd / GRO-PVCL修飾電極還具有出色的穩定性、再現性與抗干擾的能力。(iv)在電化學感測器上採用了熱響應的聚(N-乙烯基己內酰胺)的多壁奈米碳管(MWCNT-PVCL)所修飾的金奈米粒子(Au@MWCNT-PVCL)催化劑,用於形成靈敏的「通路-斷路」開關 - 如(Picloram)PCR的檢測。Au@MWCNT-PVCL在表面浸潤的狀態下,在40℃(> LCST)時自發地將其親水性表面轉換為疏水性表面,這大大的提高了催化劑PCR氧化的電化學反應,代表其為「通路」狀態。 Au@MWCNT-PVCL修飾電極的檢測範圍為0.02至183 µM,在40℃時對PCR的檢測限低至1.5 nM。綜上所述:我們為導電聚合物,碳材料及過渡金屬奈米粒子的熱響應聚合物提供了創新的想法,並發現可增強感測器的電化學性能且具出色的熱敏感電催化劑。

In recent years, the stimulating-responsive materials have provoked immense interest and exhibited vast significance in the growth of thermo-responsive electrocatalyst owing to its interesting temperature-sensitive properties. Specifically, the “On-Off” switch like creates innovative concepts and designs to pursuing improves the electrocatalytic activity of thermoresponsive polymers. The conducting polymers, carbon materials, and transition metal nanoparticles are inserting into the polymer microgels have been widely adopted to enhance the electrical conductivity of microgels. Encouraged by these investigations, we have synthesized the thermo-responsive polymer with conducting polymers, carbon materials, and transition metals then used as the electrode materials for temperature-sensitive electrochemical sensor applications. (i) Hence, we investigated the synthesis of adaptable conductive microgel film consisting of thermo-sensitive PNIPAM and conductive PEDOT. The constructed sensor revealed good thermo-sensitivity and reversible switchability in 5-Fluorouracil (5-FU) detection. The proposed PNIPAM-PEDOT exhibited a low detection limit of 15 nM at 40 oC for the detection of 5-FU. In real sample analysis, the PNIPAM-PEDOT exhibited a feasible recovery range for 5-FU detection in human blood serum samples. (ii) The PNIPAM/PANI-Cu, comprising of thermoresponsive polymer PNIPAM, conducting polymer PANI and Cu ion, was synthesized and its application as an efficient temperature-reversible electrocatalyst for the electrochemical detection of herbicide aclonifen (AFN). The fabricated sensor revealed reversible “on/off” electrochemical behaviors, which are modified with a temperature-responsive polymer. The reproducible “on/off” sensing of the voltammetric performances of AFN at the PNIPAM/PANI-Cu/GCE were obtained by controlling the phosphate buffer temperature. The proposed sensor exhibited a two linear range (0.01-10 µM and 18-76 µM) with the low limit of detection was to be 0.009 µM. This composite film achieved good recovery results in lake water samples for the determination of AFN. (iii) In this study, the graphene oxide (GRO)-based temperature-sensitive smart catalytic support material was established by tethering biodegradable and hydrophilic poly(N-vinylcaprolactam) (PVCL) on GRO (GRO-PVCL) surface. GRO-PVCL-supported palladium catalyst (Pd/GRO-PVCL) was developed to an electrode material for electrochemical reduction of tizanidine (TZN). By combining the large surface area, excellent electron transfer and electrochemical catalysis abilities of GRO with the responsive characteristics of PVCL, temperature-triggered reversible electrocatalysis of TZN with enhanced sensitivity has been proved. The synergistic effect amid Pd and GRO-PVCL on the Pd/GRO-PVCL improved the electrocatalytic activity of TZN. The detection of TZN with the Pd/GRO-PVCL modified electrode ranged from 0.02 to 276 µM with a low detection limit of 0.0015 µM at 40 oC. The Pd/GRO-PVCL modified electrode also possesses excellent stability, reproducibility, and anti-interference ability. (iv) We employed a temperature-responsive PVCL-tethered multiwalled carbon nanotube (MWCNT-PVCL) decorated gold nanoparticles (Au@MWCNT-PVCL) catalyst on the electrochemical sensor for the sensitive “On/Off” switch-like detection of (Picloram) PCR. Surface wettability of the as-prepared Au@MWCNT-PVCL then spontaneously switched its hydrophilic to hydrophobic surface one at 40 oC (>LCST) that immensely upgraded PCR oxidation on the catalyst in the electrochemical reaction, signifying the “On” state. The detection of the Au@MWCNT-PVCL modified electrode ranged from 0.02 to 183 µM with a low detection limit of 1.5 nM at 40 oC toward PCR. Hence, we concluded that the thermos-responsive polymer with conducting polymers, carbon materials, and transition metal nanoparticles offer the novel idea to find out the excellent thermos-sensitive electrocatalysts with enhanced electrochemical performances towards the sensors.



Table of Contents
摘要 i
ABSTRACT iii
Acknowledgements vi
Table of Contents viii
List of Tables xv
List of Schemes xvi
List of Figures xvii
Chapter I Introduction 1–35
1.1 Responsive Polymer-Based Materials (RPMs) 1
1.1.1 Temperature-Responsive Polymers 2
1.1.2 Stimuli-Responsive Polymer Microgels (SRPMGs) 4
1.1.3 Temperature-Sensitive Polymer microgels (PNIPAM vs PVCL) 5
1.1.4 Poly(N-isopropylacrylamide) (PNIPAM) and Poly(N- vinylcaprolactam) (PVCL)Sensor 6
1.2 Sensing and Biosensing Applications of Stimuli-Responsive Polymer Microgels 7
1.2.1 Strategies for Improving Catalytic Performances 8
1.2.2 Encapsulation of Conducting Fillers into Thermo-Sensitive Polymer Microgels 10
1.2.3 Architectures of Hybrid Responsive Microgels 11
1.2.4 Microgels Functionalized By Conductive Fillers 11
1.3 Conducting Polymers 12
1.3.1 Poly(3,4-Ethylene Dioxythiophene) (PEDOT) 13
1.3.2 Polyaniline (PANI) 14
1.4 Metal Nanoparticles 15
1.4.1 Transition Metal Nanoparticles 15
1.4.2 Noble Metal Nanoparticles (NMNPs) 15
1.5 Carbon Nanomaterials 17
1.5.1 Graphene Oxide (GO) 18
1.5.2 Carbon Nanotubes (CNTs) 19
1.6 Synthesis of Hybrid Thermo-Responsive Polymer Microgels 20
1.6.1 Radical Polymerization Method 20
1.6.2 Oxidative Polymerization Method 20
1.6.3 Precipitation Polymerization Method 21
1.6.4 Sonochemical Method 21
1.7 Electrochemical Sensors 21
1.8 Characterization Techniques 22
1.8.1 X-ray Diffraction (XRD) 22
1.8.2 Fourier-transform infrared spectroscopy (FTIR) 23
1.8.3 Raman Spectroscopy 23
1.8.4 Field Emission Scanning Electron Microscopy (FE-SEM) 24
1.8.5 Transmission Electron Microscopy (TEM) 25
1.8.6 X-Ray Photoelectron Spectroscopy (XPS) 25
1.8.7 Energy Dispersive X-Ray Spectroscopy (EDX) 26
1.8.8 Elemental Mapping 26
1.9 Electrochemical Characterization Techniques 26
1.9.1 Electrochemical Impedance Spectroscopy (EIS) 26
1.9.2 Electrochemical Sensing Application 27
1.9.3 Cyclic Voltammetry (CV) 28
1.9.4 Differential Pulse Voltammetry (DPV) 28
1.10 Scope of the Present Work 29
1.11 Outline of the Thesis 30
1.12 References 32
Chapter II Temperature-Reversible Switched Antineoplastic Drug 5-Fluorouracil Electrochemical Sensor based on Adaptable Thermo-Sensitive Microgel Encapsulated PEDOT 36-65
2.1 Introduction 36
2.2 Experimental Section 39
2.2.1 Materials and Reagents 39
2.2.2 Instrument and Characterization Techniques 39
2.2.3 Preparation of PEDOT 40
2.2.4 Synthesis of Pristine PNIPAM Microgel and PNIPAM Microgel-Encapsulated PEDOT 41
2.2.5 Fabrication of the PNIPAM-PEDOT/GCE 42
2.2.6 Preparation of Real Sample 42
2.3 Results and Discussion 42
2.3.1 Preparation and Characterization of PNIPAM-PEDOT Conductive Microgel.. 42
2.3.2 Thermo-Sensitive Electrochemical Behavior of PNIPAM/GCE and PNIPAM/PEDOT/GCE toward the Ferricyanide Redox Probe 46
2.3.3 Temperature Effects of Modified Electrodes toward 5-FU 48
2.3.4 Mechanism of Thermo-Reversible Controlled Performance of PNIPAM-PEDOT towards the Detection of 5-FU 49
2.3.5 Temperature Effects of PNIPAM-PEDOT/GCE on the Detection of 5-FU 51
2.3.6 Investigation of Scan Rate and pH Studies 53
2.3.7 Temperature Responsive 5-FU Sensing Behavior of PNIPAM-PEDOT/GCE 55
2.3.8 Interference, Stability, and Reproducibility Study of PNIPAM-PEDOT/GCE 57
2.3.9 The Practical Applicability of 5-FU in Human Blood Serum Samples 59
2.4 Conclusion 60
2.5 References 62
Chapter III Stimuli-Enabled Reversible Switched Aclonifen Electrochemical Sensor based on Smart PNIPAM/PANI-Cu Hybrid Conducting Microgel 66-90
3.1 Introduction 66
3.2 Experimental Section 69
3.2.1 Materials and Solutions 69
3.2.2 Apparatus and Characterizations 69
3.2.3 Synthesis of PNIPAM Microgel 70
3.2.4 Synthesis of PNIPAM/PANI-Cu 71
3.2.5 Sensor Fabrication 72
3.3 Results and Discussion 73
3.3.1 Material Characterizations 73
3.3.2 EIS of Different Modified Electrodes and Temperature Effect on the EIS of PNIPAM/PANI-Cu/GCE 76
3.3.3 Electrochemical Performance of AFN on Different Electrodes 78
3.3.4 Effect of Scan Rate and pH 79
3.3.5 Temperature Effects on AFN at the PNIPAM/PANI-Cu/GCE 81
3.3.6 Electrochemical Switch-Like Performances of AFN on the PNIPAM/PANI-Cu/GCE 82
3.3.7 Determination of AFN at the PNIPAM/PANI-Cu/GCE 83
3.3.8 Selectivity and Reproducibility Studies 85
3.3.9 Analytical Applicability of the Sensor 86
3.4. Conclusion 87
3.5. References 88
Chapter IV Thermo-Reversible Switch-Like Electrocatalytic Reduction of Tizanidine based on Graphene Oxide-Tethered Stimuli-Responsive Smart Surface Supported Pd Catalyst 91-118
4.1 Introduction 91
4.2 Experimental Section 93
4.2.1 Materials and Reagents 93
4.2.2 Apparatus 94
4.2.3 Synthesis of GRO-PVCL Composite 94
4.2.4 Synthesis of Thermo-Responsive Pd/GRO-PVCL Nanocomposite 95
4.2.5 Electrochemical Measurements 95
4.2.6 Electrode Fabrication 95
4.2.7 Real Samples Preparation 96
4.3. Results And Discussion 97
4.3.1 Characterization of Pd/GRO-PVCL Nanocomposite 97
4.3.2 Temperature-Responsive Electrocatalysis of Pd/GRO-PVCL/GCE on the Electrochemical Impedance Spectroscopy (EIS) 101
4.3.3 Thermo-Reversible Electrocatalysis of Pd/GRO-PVCL/GCE for the Reduction of TZN 103
4.3.4. Influence of pH and Scan Rate 106
4.3.5. Temperature Effects and “ON-OFF” Electrochemical Behaviors on TZN Detection at the Pd/GRO-PVCL/GCE 109
4.3.6. Analytical Performance of the Pd/GRO-PVCL/GCE toward TZN Detection 110
4.3.7. Repeatability, Reproducibility, Stability, and Selectivity Studies 113
4.3.8. Determination of TZN in Human Urine and Human Plasma Samples 114
4.4. Conclusion 116
4.5. References 117
Chapter V Temperature-Enabled Reversible “On/Off” Switch-Like Hazardous Herbicide Picloram Voltammetric Sensor in Agricultural and Environmental Samples based on Thermo-Responsive PVCL-Tethered MWCNT@Au Catalyst 119-147
5.1 Introduction 119
5.1 Experimental Section 122
5.2.1 Materials 122
5.2.2 Synthesis of MWCNT-PVCL Composite 123
5.2.3 Synthesis of Thermo-Responsive Au@MWCNT-PVCL Nanocomposite 123
5.2.4 Apparatus 124
5.2.5 Electrode Fabrication 125
5.3. Results and Discussion 125
5.3.1 Characterization of Au@MWCNT-PVCL Composite 125
5.3.2 Equilibrium Swelling Ratio Measurement (ESR) 129
5.3.3 Electrochemical “On-Off” Performances in Ferricyanide Redox Probe at the PVCL/GCE and Au@MWCNT-PVCL/GCE 130
5.3.4 Electrochemical Performances of PCR at the Au@MWCNT-PVCL/GCE 132
5.3.5 Mechanism of PCR Sensing 135
5.3.6 Temperature Effects Cyclic Voltammetry Responses of the PCR on the Au@MWCNT-PVCL/GCE 136
5.3.7 Temperature-Responsive Differential Pulse Voltammetry (DPV) Response of the PCR on the Au@MWCNT-PVCL/GCE 137
5.3.8 Long-Term Stability, Repeatability, and Reproducibility Studies of the Au@MWCNT-PVCL/GCE 139
5.3.9 Real-Time Detection of PCR in Rice, River Water, and Soil Samples 141
5.4. Conclusion 143
5.5. References 145
Chapter VI Summary and Conclusion 148-150
Chapter VII List of Publication 151-155



1.A. Kikuchi, T. Okano, Prog. Polym. Sci. 127 (2002) 165-93.
2.B. Jeong, A. Gutowska, Trends Biotechnol. 20 (2002) 305-11.
3.Y. Qiu, Advanced drug delivery reviews. 53 (2001) 321-39.
4.A.S. Hoffman, P.S. Stayton, V. Bulmus, G. Chen, J. Chen, C. Cheung, A. Chilkoti, Z. Ding, L. Dong, R. Fong, C.A. Lackey, J. Biomed. Mater. Res. 52 (2000) 577-586.
5.K. Mahato, A. Baranwal, A. Srivastava, P.K. Maurya, P Springer, Cham. (2016) 421-431
6.J.A.R. Ruiz, A.M. Sanjuán, S. Vallejos, F.C. García, J.M. García. Chemosensors. 6 (2018) 12.
7.Y. Zhou, C. Chen, J. Zhao, J. Fei, Y. Ding, Y. Cai, Electrochim. Acta. 192 (2016) 158-166.
8.X. Li, Y. Gao, M.J. Serpe, Gels. 2 (2016) 8.
9.K. Nagase, M. Yamato, T. Okano, Temperature-responsive Polymers for Tissue Engineering. 31 (2018) 301.
10.R. Hoogenboom, Woodhead Publishing. (2019) 13-44.
11.P. Zhao, M. Ni, C. Chen, C. Wang, P. Yang, X. Wang, C. Li, Y. Xie, J. Fei, Electroanalysis. (2020) 28.
12.C. Chen, P. Zhao, M. Ni, C. Li, Y. Xie, J. Fei, Analyst. 144 (2019) 1960-1967.
13.C. Echeverria, S.N. Fernandes, M.H. Godinho, J.P. Borges, P.I. Soares. Gels. 2 (2018) 54.
14.G. Agrawal, R. Agrawal. Polymers. 10 (2018) 418.
15.Y. Zhang, W.S. Carvalho, C. Fang, M.J. Serpe. Sens. Actuators, B. 290 (2019) 520-526.
16.Y. Guan, Y. Zhang, Soft Matter. 7 (2011) 6375-84.
17.A. Imaz, J. Forcada, Journal of Polymer Science Part A: Polymer Chemistry. 46 (2008) 2510-2524.
18.G. Agrawal, R. Agrawal. Small. 14 (2018) 1801724.
19.A. Fandrich, J. Buller, H. Memczak, W. Stöcklein, K. Hinrichs, E. Wischerhoff, B. Schulz, A. Laschewsky, F. Lisdat. Electrochim. Acta. 229 (2017) 325-333.
20.E. Katz, Electroanalysis. 30 (2018) 759-797.
21.E. Katz, Electroanalysis. 28 (2016) 1916-1929.
22.K. Kaniewska, M. Karbarz, Z. Stojek, W. Hyk, Electrochem. Commun. 81 (2017) 24-28.
23.E. Katz, S. Minko, J. Halámek, K. MacVittie, K. Yancey. Anal. Bioanal. Chem. 405 (2013) 3659-3672.
24.Y. Ma, Y. Kong, J. Xu, Y. Deng, M. Lu, R. Yu, M. Yuan, T. Li, J. Wang. Talanta. 208 (2020) 120373.
25.T.M. Caputo, E. Battista, P.A. Netti, F. Causa. ACS Appl. Mater. Interfaces. 11 (2019) 17147-17156.
26.M. Shah, L.A. Shah, M.S. Khan, M.Q. Nasar, S. Rasheed. Iran. Polym. J. 28 (2019) 515-525.
27.M. Mackiewicz, K. Marcisz, M. Strawski, J. Romanski, Z. Stojek, M. Karbarz. Electrochim. Acta. 268 (2018) 531-538.
28.Q.M. Zhang, D. Berg, J. Duan, S.M. Mugo, M.J. Serpe. ACS Appl. Mater. Interfaces. 8 (2016) 27264-27269.
29.K. Marcisz, K. Kaniewska, M. Karbarz. Curr. Opin. Electrochem. 23 (2020) 57-64.
30.V. Thomas, M. Namdeo, Y.M. Mohan, S.K. Bajpai, M. Bajpai. J. Macromol. Sci. Part A Pure Appl. Chem. 45 (2007) 107-119.
31.Y.Z. Wang, H. Zhong, X.R. Li, X.Q. Zhang, Z.P. Cheng, Z.C. Zhang, Y.J. Zhang, P. Chen, L.L. Zhang, L.S. Ding, J.K. Wang. J. Electroanal. Chem. 51 (2019) 113410.
32.L.V. Sigolaeva, D.V. Pergushov, M. Oelmann, S. Schwarz, M. Brugnoni, I.N. Kurochkin, F.A. Plamper, A. Fery, W. Richtering. Polymers. 10 (2018) 791.
33.K. Kaniewska, K. Kyriacou, M. Donten, Z. Stojek, M. Karbarz. Electrochim. Acta. 2905 (2018) 95-604.
34.J. Zhang, S. Xu, E. Kumacheva.. 126 (2004) 7908-7914.
35.J. Mrkic, B.R. Saunders. Journal of colloid and interface science. 222 (2000) 75-82.
36.Pich A, Lu Y, Adler HJ, Schmidt T, Arndt KF. Dispersion polymerization of pyrrole in the presence of poly (vinyl methyl ether) microgels. Polymer. 43 (2002) 5723-5729.
37.A. Pich, Y. Lu, V. Boyko, K.F. Arndt, H.J. Adler. Polymer. 44 (2003) 7651-7659.
38.Z.H. Farooqi, S.R. Khan, R. Begum. Materials Science and Technology. 33 (2017) 129-137.
39.A.Z. Pich, H.J. Adler Polymer international. 56 (2007) 291-307.
40.Y. Osada, J. P. Gong, Y. Tanaka. Polymer gels. Polym. Rev. 44 (2004) 87-112.
41.F. Zhao, Y. Shi, L. Pan, G. Yu. Acc. Chem. Res. 50 (2017) 1734-1743.
42.M.H. Naveen, N.G. Gurudatt, Y.B. Shim. Appl. Mat. Today. 9 (2017) 419-433.
43.W. Wei, H. Wang, Y.H. Hu, Int. J. Energy Res. 38 (2014) 1099-1111.
44.S. Cao, X. Tong, K. Dai, Q. Xu. J. Mater. Chem. A. 7 (2019) 8204-8209.
45.I. Fratoddi, I. Venditti, C. Cametti, M.V. Russo. Sens. Actuators, B. 220 (2015) 534-548.
46.L.O. Vretik, Y. Noskov, N.A. Ogurtsov, O.A. Nikolaeva, A. Shevchenko, A. Marynin, M.S. Kharchuk, O.M. Chepurna, T.Y. Ohulchanskyy, A.A. Pud. Appl. Nanosci. 47 (2020) 777-779.
47.D.H. Santos, M.B.G. García, A.C. García. Electroanalysis. 18 (2002) 1225-1235.
48.S. Guo, E. Wang. Anal. Chim. Acta. 598 (2007) 181-192.
49.S. Chen, R. Yuan, Y. Chai, F. Hu, Microchim. Acta. 180 (2013) 15-32.
50.D.K. Avasthi, Y.K. Mishra, D. Kabiraj, N.P. Lalla, J.C. Pivin. Nanotechnology. 18 (2007) 125604.
51.F. Faupel, V. Zaporojtchenko, T. Strunskus, M. Elbahri. 12 (2010) 1177-1190.
52.J. Wang. Microchim. Acta. 177 (2012) 245-270.
53.M Trojanowicz. TrAC, Trends Anal. Chem. 25 (2006) 480-489.
54.Q. Wang, B. Arash. Comput. Mater. Sci. 82 (2014) 350-360.
55.K. Toda, R. Furue, S. Hayami. Anal. Chim. Acta. 878 (2015) 43-53.
56.D. Vairavapandian, P. Vichchulada, M.D. Lay. Anal. Chim. Acta. 626 (2008) 119-129.
57.E.T. Thostenson, Z. Ren, T.W. Chou. Compos. Sci. Technol. 61 (2001) 1899-1912.
58.K. Matyjaszewski, T.P. Davis. Handbook of radical polymerization. John Wiley & Sons. (2003).
59.M.R. Huang, X.G. Li, Y. Yang. Polym. Degrad. Stab. 71 (2000) 31-38.
60.A. Pich, W. Richtering. InChemical Design of Responsive Microgels Springer, Berlin, Heidelberg. 234 (2010) 1-37.
61.I. Widnersson, B.M. Teo, M. Ashokkumar, F. Grieser. Colloids Surf., A. 377 (2011) 342-348.
62.E. Bakker, M. T. Diaz, Electrochemical sensors. Anal. Chem. 74 (2002) 2781-2800.
63.D.W. Kimmel, G. LeBlanc, M.E. Meschievitz, D.E. Cliffel. Anal. Chem. 84 (2012) 685-707.
1.M. Satyanarayana, K. Y. Goud, K.K. Reddy, K. V. Gobi, Electrochim. Acta. 178 (2015) 608-616.
2.D. B. Longley, D. P. Harkin, P. G. Johnston, Nat. Rev. Cancer. 3 (2003) 330-338.
3.J. L. Grem, Invest. New Drugs. 18 (2000) 299-313.
4.C. Heidelberger, N. K. Chaudhuri, P. Danneberg, D. Mooren, L. Griesbach, R. Duschinsky, R. J. Schnitzer, E. Pleven, J. Scheiner, Nature. 179 (1957) 663-666.
5.F. Casale, R. Canaparo, L. Serpe, E. Muntoni, C. Della Pepa, M. Costa, L. Mairone, G.P. Zara, G. Fornari, M. Eandi, Pharmacol. Res. 50 (2004) 173-179.
6.T. P. Huynh, P. Pieta, F. D’Souza, W. Kutner, Anal. Chem. 85 (2013) 8304-8312.
7.M. Breda, S. Baratte, Anal. Bioanal. Chem. 397 (2010) 1191-1201.
8.Y. Furuya, K. Yamamoto, N. Kohno, M. Yamamoto, Y. Saitoh, Cancer Lett. 94 (1995) 207-211.
9.M. Forough, K. Farhadi, R. Molaei, H. Khalili, R. Shakeri, A. Zamani, A.A. Matin, J. Chromatogr. B 1040 (2017) 22-37.
10.B. A. Jacobs, H. Rosing, N. de Vries, D. Meulendijks, L. M. Henricks, J.H. Schellens, J. H. Beijnen, J. Pharm. Biomed. Anal. 126 (2016) 75-82.
11.R. Deporte, M. Amiand, A. Moreau, C. Charbonnel, L. Campion, J. Chromatogr. B 834 (2006) 170-177.
12.B. Giese, D. McNaughton, ‎J. Phys. Chem. B 106 (2002) 1461-1470.
13.V. Selvaraj, M. Alagar, Int. J. Pharm. 337 (2007) 275-281.
14.M. B. Celle, G. Remaud, S. Traore, A.L. Poirier, L. Gamelin, A. Morel, E. Gamelin, Cancer Lett. 249 (2007) 271-282.
15.B. B. Prasad, S. Srivastava, K. Tiwari, P.S. Sharma, Sens. Mater. 21 (2009) 291-306.
16.J. Wang, M. S. Lin, V. Villa, Analyst. 112 (1987) 247-251.
17.A. Guerrieri, T. R. Cataldi, F. Palmisano, P. G. Zambonin, J. Electroanal. Chem. Interfacial Electrochem. 314 (1991) 117-134.
18.M. Khodari, M. Ghandour, A. M. Taha, Talanta. 44 (1997) 305-310.
19.V. Mirceski, R. Gulaboski, B. Jordanoski, S. K. Lovric, J. Electroanal. Chem. 490 (2000) 37-47.
20.X. He, H. Han, L. Liu, W. Shi, X. Lu, J. Dong, W. Yang, X. Lu, ACS Appl. Mater. Interfaces. 11 (2019) 13676–13684.
21. (a) T. Sun, G. Qing Adv. Mater. 23 (2011) H57-H77. (b) F. Xia, L. Jiang, Adv. Mater. 20 (2008) 2842-2858. (c) N. Nath, A. Chilkoti, Adv. Mater. 14 (2002) 1243-1247.
22.M. A. Stuart, W. T. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V.V. Tsukruk, M. Urban, F. Winnik, Nat. Mater. 9 (2010) 101-113.
23.W. C. de Vries, M. Tesch, A. Studer, B. J. Ravoo, ACS Appl. Mater. Interfaces. 9 (2017) 41760-41766.
24.C. Rossner, O. Glatter, P. Vana, Macromolecules. 50 (2017) 7344-7350.
25.K. Liu, J. Wu, G.H. Paulino, H. J. Qi, Sci. Rep. 7 (2017) 3511.
26.C. Chen, M. Zhang, C. Li, Y. Xie, J. Fei, Microchim. Acta 185 (2018) 155.
27.B. Mutharani, P. Ranganathan, S.M. Chen, R.S. Kannan, Ultrason. Sonochem. 56 (2019) 200-212.
28.Y. Liu, D. Yu, C. Zeng, Z. Miao, L. Dai, Langmuir. 26 (2010) 6158-6160.
29.H. Hamidi, S. Bozorgzadeh, B. Haghighi, Microchim. Acta. 184 (2017) 4537-4543.
30.Y. Shi, W. Zhou, A.Y. Lu, W. Fang, Y. H. Lee, A. L. Hsu, S. M. Kim, K. K. Kim, H. Y. Yang, L.J. Li, J.C. Idrobo, Nano Lett. 12 (2012) 2784-2791.
31.Y. Shi, C. Ma, L. Peng, G. Yu, Adv. Funct. Mater. 25 (2015) 1219-1225.
32.J. Liu, J. Liu, F. Ma, J. Liu, ACS Appl. Polym. Mater. 1 (2019) 152-159.
33.H. Kim, K. Kim, S. J. Lee, NPG Asia Mater. 9 (2017) e445.
34.Y. Dou, J. Han, T. Wang, M. Wei, D.G. Evans, X. Duan, Langmuir 28 (2012) 9535-9542.
35.Y. Wen, J. Xu, J. Polym. Sci. Pol. Chem. 55 (2017) 1121-1150.
36.Y. H. Ha, N. Nikolov, S.K. Pollack, J. Mastrangelo, B.D. Martin, R. Shashidhar, Adv. Funct. Mater. 14 (2004) 615-622.
37.R. A. Green, N. H. Lovell, G.G. Wallace, L. A. Poole-Warren, Biomaterials. 29 (2008) 3393-3399.
38.Y. Hui, C. Bian, S. Xia, J. Tong, J. Wang, Anal. Chim. Acta 1022 (2018) 1-9.
39.Q. Tian, J. Xu, Y. Zuo, Y. Li, J. Zhang, Y. Zhou, X. Duan, L. Lu, H. Jia, Q. Xu, Y. Yu, J. Electroanal. Chem. 837 (2019) 1-9.
40.F. Jiang, R. Yue, Y. Du, J. Xu, P. Yang, Bioelectron. 44 (2013) 127-131.
41.S.V. Selvaganesh, J. Mathiyarasu, K.L. Phani, V. Yegnaraman, Nanoscale Res. Lett. 2 (2007) 546.
42.B. Mutharani, P. Ranganathan, S.M. Chen, J. Taiwan Inst. Chem. Eng. 96 (2019) 599-609.
43.S. Sun, P. Wu, J. Mater. Chem. 21 (2011) 4095-4097.
44.W. Si, W. Lei, Z. Han, Y. Zhang, Q. Hao, M. Xia, Sens. Actuator B-Chem. 193 (2014) 823-829.
45.A. Popov, B. Brasiunas, L. Mikoliunaite, G. Bagdziunas, A. Ramanavicius, A. Ramanaviciene, Polymer. 172 (2019) 133-141.
46.Y. Zhou, C. Chen, J. Zhao, J. Fei, Y. Ding, Y. Cai, Electrochim. Acta. 192 (2016) 158-166.
47.M. Satyanarayana, K.Y. Goud, K.K. Reddy, K.V. Gobi, Electrochim. Acta. 178 (2015) 608-616.
48.S.D. Bukkitgar, N.P. Shetti, Mater. Sci. Eng. C. 65 (2016) 262–268.
49.F.M. Zahed, B. Hatamluyi, F. Lorestani, Z. Eshaghi, J. Pharm. Biomed. Anal. 161 (2018) 12-19.
50.S.R. Sataraddi, S.T. Nandibewoor, Der Pharma Chem. 3 (2011) 253–265.
51.D. Lima, G.N. Calaca, A.G. Viana, C.A. Pessoa, Appl. Surf. Sci. 427 (2018) 742–753.

1.N. Oturan, I. Sires, M. A. Oturan, E. Brillas, J. Environ. Eng. Manage. 19 (2009) 235-255.
2.M. A. Rodrigo, N. Oturan, M. A. Oturan, Chem. Rev. 114 (2014) 8720-8745.
3.D. Guziejewski, S. Smarzewska, M. Skowron, W. Ciesielski, A. Nosal-Wiercinska, S. Skrzypek, Acta Chim. Slov. 63 (2015) 1-7.
4.R. Inam, Z. Cakmak, Anal. Methods. 5 (2013) 3314-3320.
5.A. Lagana, G. Fago, L. Fasciani, A. Marino, M. Mosso, Anal. Chim. Acta. 414 (2000) 79-94.
6.H. L. Sheu, Y. H. Sung, M. B. Melwanki, S. D. Huang, J. Sep. Sci. 29 (2006) 2647–2652.
7.V. Novotny, J. Barek, Ecol. Chem. Eng. S 24 (2017) 277-284.
8.O. Kilinc, S. Reynaud, L. Perez, M. Tissut, P. Ravanel, Pestic. Biochem. Physiol. 93 (2009) 65-71.
9.L. Scrano, S.A. Bufo, M. D’Auria, P. Meallier, A. Behechti, K.W. Shramm, J. Environ. Qual. 31 (2002) 268-274.
10.B. M. Francis, R. L. Metcalf, P. A. Lewis, N. Chernoff, Teratology. 59 (1999) 69-80.
11.R. Teshima, R. Nakamura, O. Nakajima, A. Hachisuka, J. I. Sawada, Toxicol. Lett. 150 (2004) 277-283.
12.A. Laganà, A. Bacaloni, G. Fago, A. Marino, Chromatographia. 52 (2000) 552-558.
13.J. Fischer, H. Dejmkova, J. Barek, Curr. Org. Chem. 15 (2011) 2923-2935.
14.J. Ðorđević, Z. Papp, V. Guzsvány, I. Švancara, T. Trtić-Petrović, M. Purenović, K. Vytřas, Sensors. 12 (2012) 148-161.
15.C. Chen, Z. Zhou, X. Li, C.Y. Li, Y. Xie, J. Fei, Nanoscale. 11 (2019) 7394-7403.
16.M. Das, H. Zhang, E. Kumacheva, Annu. Rev. Mater. Res. 36 (2006) 117-142.
17.L. Peng, A. Feng, M. Huo, J. Yuan, Chem. Commun. 86 (2014) 13005-13014.
18.P. Wan, X. Chen, ChemElectroChem. 1 (2014) 1602-1612.
19.X. Song, B. Bao, J. Tao, S. Zhao, X. Han, H. Liu, J. Phys. Chem. C. 123 (2018) 1828-1838.
20.M. Karg, T. Hellweg, Curr. Opin. Colloid Interface Sci. 14 (2009) 438-450.
21.Y. Shi, X. Zhou, J. Zhang, A.M. Bruck, A.C. Bond, A.C. Marschilok, K.J. Takeuchi, E.S. Takeuchi, G. Yu, Nano Lett. 17 (2017) 1906-1914.
22.H. Hamidi, S. Bozorgzadeh, B. Haghighi, Microchim. Acta. 184 (2017) 4537-4543.
23. Y. Liu, D. Yu, C. Zeng, Z. Miao, L. Dai, Langmuir. 26 (2010) 6158– 6160.
24.M.J. Allen, V.C. Tung, R.B. Kaner, Chem. Rev. 110 (2009) 132-145.
25.Y. Shi, W. Zhou, A. Y. Lu, W. Fang, Y. H. Lee, A.L. Hsu, S. M. Kim, K. K. Kim, H. Y. Yang, L. J. Li, J.C. Idrobo, Nano Lett. 12 (2012) 2784-2791.
26.Y. Shi, C. Ma, L. Peng, G. Yu, Adv. Funct. Mater. 25 (2015) 1219-1225.
27.P. Åsberg, O. Inganäs, Biosens. Bioelectron. 19 (2003) 199-207.
28.M. Mackiewicz, T. Rapecki, Z. Stojek, M. Karbarz, J. Mater. Chem. B. 2 (2014) 1483-1489.
29.L. Pan, G. Yu, D. Zhai, H.R. Lee, W. Zhao, N. Liu, H. Wang, B. C. Tee, Y. Shi, Y. Cui, Z. Bao, ‎Proc. Natl. Acad. Sci. 109 (2012) 9287-9292.
30.V. Thomas, M. Namdeo, Y. Murali Mohan, S.K. Bajpai, M. Bajpai, J. Macromol. Sci. Part A Pure Appl. Chem. 45 (2007) 107-119.
31.T.H. Tran, V.T. Nguyen, Int. Sch. Res. Notices (2014).
32.X. Hu, T. Liu, Y. Zhuang, W. Wang, Y. Li, W. Fan, Y. Huang, Trends Anal. Chem. 77 (2016) 66-75.
33.F. Chen, Q. Cao, C. Dong, B. Shao, W. Zhai, X. Ma, B. Wei Ultrason. Sonochem. 49 (2018) 190-195.
34.B. Mutharani, P. Ranganathan, S.M. Chen, J. Taiwan Inst. Chem. Eng. 96 (2019) 599-609.
35.H. Xu, J. Zhang, Y. Chen, H. Lu, J. Zhuang, RSC Adv. 4 (2014) 5547-5552.
36.S. Cao, X. Tong, K. Dai, Q. Xu, J. Mater. Chem. A. 7 (2019) 8204-8209.
37.S. Makharza, J. Auisa, S. A. Sharkh, J. Ghabboun, M. Faroun, H. Dweik, W. Sultan, M. Sowwan, Int. J. Polym. Anal. Charact. 15 (2010) 254-265.
38.V. Novotný, J. Barek, Ecol. Chem. Eng. S 22 (2015) 451-458.
39.A. Zaouak, F. Matoussi, M. Dachraoui, Int. J. Electrochem (2011).

1.K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, science. 306 (2004) 666-669.
2.J. Shu, Z. Qiu, D. Tang, Anal. Chem. 90 (2018) 9691-9694.
3.J. Shu, D. Tang, Anal. Chem. 92 (2020) 363-377.
4.G. Cai, Z. Yu, R. Ren, D. Tang, ACS Sens. 3 (2018) 632−639.
5.R. Zeng, J. Tao, D. Tang, D. Knopp, J. Shu, X. Cao, Nano Energy. 71 (2020) 104580.
6.C. Wu, X. Huang, X. Wu, R. Qian, P. Jiang, Adv. Mater. 25 (2013) 5658-5662.
7.H. Chang, H. Wu, Adv. Funct. Mater. 23 (2013) 1984-1997.
8.S.P. Lonkar, A.A. Abdala, J. Thermodyn. Catal. 5 (2014) 100132.
9.K. Chen, S. Song, F. Liu, D. Xue, Chem. Soc. Rev. 44 (2015) 6230-6257.
10.V.B. Mohan, K.T. Lau, D. Hui, D. Bhattacharyya, Compos. B. Eng. 142 (2018) 200-220.
11.Y. Li, S. Wang, Q. Wang, M. Xing, Compos. B. Eng. 133 (2018) 35-41.
12.M. Nasrollahzadeh, Z. Issaabadi, M.M. Tohidi, S. Mohammad Sajadi, Chem. Rec. 18 (2018) 165-229.
13.Y. Yang, A.C. Reber, S.E. Gilliland III, C.E. Castano, B.F. Gupton, S.N. Khanna, J. Catal. 360 (2018) 20-26.
14.G.M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, R. Mülhaupt, J. Am. Chem. Soc. 131 (2009) 8262-8270.
15.F. Yang, C. Wang, S. Dong, C. Chi, X. Jia, L. Zhang, Y. Li, Mater. Lett. 174 (2016) 192-196.
16.J. Lin, T. Mei, M. Lv, Z. Zhao, X. Wang, RSC Adv. 4 (2014) 29563-29570.
17.R. Zeng, Z. Luo, L. Zhang, D. Tang, Anal. Chem. 90 (2018) 12299-12306.
18.J. Zhu, X. Ding, D. Li, M. Dou, M. Lu, Y. Li, F. Luo, ACS Appl. Mater. Interfaces. 11 (2019) 16443-16451.
19.Y. Zhang, H. Shu, G. Chang, K. Ji, M. Oyama, X. Liu, Y. He, Electrochim. Acta. 109 (2013) 570-576.
20.M.M. Aghayan, M. Kalantari, R. Boukherroub, Appl. Organomet. Chem. 33 (2019) e4837.
21.S.E. Hooshmand, B. Heidari, R. Sedghi, R.S. Varma, Green Chem. 21 (2019) 381-405.
22.B. Mutharani, P. Ranganathan, S.M. Chen, Sens. Actuator B-Chem. 304 (2020) 127361.
23.S. Stankovich, R.D. Piner, X. Chen, N. Wu, S.T. Nguyen, R.S. Ruoff, J. Mater. Chem. 16 (2006) 155-158.
24.D. Wang, H. Duan, J. Lü, C.J. Lü, Mater. Chem. A 5 (2017) 5088-5097.
25.V. Georgakilas, J.N. Tiwari, K.C. Kemp, J.A. Perman, A.B. Bourlinos, K.S. Kim, R. Zboril, Chem. Rev. 116 (2016) 5464-5519.
26.J. Spěváček, J. Dybal, L. Starovoytova, A. Zhigunov, Z. Sedláková, Soft Matter. 8 (2012) 6110-6119.
27.H. Vihola, A. Laukkanen, L. Valtola, H. Tenhu, J. Hirvonen, Biomaterials. 26 (2005) 3055-3064.
28.E.A. Markvicheva, S.V. Kuptsova, T.Y. Mareeva, A.A. Vikhrov, T.N. Dugina, S.M. Strukova, Y.N. Belokon, K.A. Kochetkov, E.N. Baranova, V.P. Zubov, D. Poncelet, Appl. Biochem. Biotechnol. 88 (2000) 145-157.
29.H. Vihola, A. Laukkanen, J. Hirvonen, H. Tenhu, Eur. J. Pharm. Sci. 16 (2002) 69-74.
30.A. Sinha, R. Jain, Mater. Res. Bull. 65 (2015) 307-314.
31.M. Rossi, G. Ianigro, G. Liberatoscioli, A. Di Castelnuovo, V. Grimani, A. Garofano, N. Camposarcone, L. F. Nardi, Minerva Med. 103 (2012) 143-149.
32.R. Jain, A. Sinha, Appl. Surf. Sci. 369 (2016) 151-158.
33.K. Momo, M. Homma, Y. Osaka, S.I. Inomata, M. Tanaka, Y.J. Kohda, Clin. Pharmacol.
50 (2010) 331-337.
34.S.T. Ulu, Luminescence. 27 (2012) 426-430.
35.J.M. Kauffmann, B.L. Ruiz, M.F. Gotori, G.J. Patriarche, J. Pharm. Biomed. Anal. 10 (1992) 763-767.
36.S. Shahrokhian, M. Shamloofard, R.J. Salimian, Electroanal. Chem 823 (2018) 146-154.

1.Rekha, S.N. Naik, R. Prasad, J. Chem. Health. Saf. 13 (2006) 12-19.
2.R. Zhou, L. Zhu, Q. Kong, Chemosphere 68 (2007) 838-847.
3.N. Pant, R. Kumar, N. Mathur, S.P. Srivastava, D.K. Saxena, V.R. Gujrati, Environ. Toxicol. Pharmacol. 23 (2007) 135-139.
4.D.J. Lee, S.A. Senseman, A.S. Sciumbato, S.C. Jung, L.J. Krutz, J. Agric. Food. Chem. 51 (2003) 2659-2664.
5.L.B. dos Santos, J.C. Masini, Talanta 72 (2007) 1023-1029.
6.A. Ghauch, Chemosphere (2001) 43 1109-1117.
7.J.F. Fairchild, K.P. Feltz, L.C. Sappington, A.L. Allert, K.J. Nelson, J. Valle, Arch. Environ. Contam. Toxicol. 56 (2009) 761-769.
8.M.R. Massaroppi, S.A. Machado, L.A. Avaca, J. Braz. Chem. Soc. 14 (2003) 113-119.
9.G. Bennett, Drinking water advisory: Pesticides: by U. Environmental Protection Agency, Office of Drinking Water Health Advisories, Lewis Publishers, Chelsea, MI, 1989, ISBN 0-87371-235-8, 819.
10.K.W. Edgell, E.J. Erb, R.J. Wesselman, J.E. Longbottom, Collaborators: N. Dodhiwala, M. Fencl, R. Hanisch, L. Levan, D. Manmade, C. Neslund, D. Wait, M. Winslow, J. AOAC Int. 76 (1993) 1098-1112.
11.L.K. Tan, D. Humphries, P.Y. Yeung, L.Z. Florence, J. Agric. Food. Chem. 44 (1996) 1135-1143.
12.R.R. González, A.G. Frenich, J.M. Vidal, Talanta 76 (2008) 211-225.
13.P. Zhao, L. Wang, L. Chen, C. Pan, Environ. Contam. Toxicol. 86 (2011) 78-82.
14.Y. Zhang, G.M. Zeng, L. Tang, C.G. Niu, Y. Pang, L.J. Chen, C.L. Feng, G.H. Huang, Talanta 83 (2010) 210-215.
15.L. Tang, G.M. Zeng, G.L. Shen, Y. P. Li, Y. Zhang, D.L. Huang, Environ. Sci. Technol. 42 (2008) 1207-1212.
16.J. Tucek, K. C. Kemp, K. S. Kim, R. Zboril, ACS nano 8 (2014) 7571-7612.
17.Y. Wang, H. Li, J. Zhang, X. Yan, Z. Chen, Phys. Chem. Chem. Phys. 18 (2016) 615-623.
18.T. Kwon, M. Jun, J. Joo, K. Lee, J. Mater. Chem. A 7 (2019) 5090-5110.
19.S. Rezaee, S. Shahrokhian, Appl. Catal. B 244 (2019) 802-813.
20.N. Perret, F. C. Lizana, M.A. Keane, Catal. Commun. 16 (2011) 159-164.
21.L. Li, T. Zhang, J. Lü, C. Lü, Appl. Surf. Sci. 454 (2018) 181-191.
22.Y. Yang, K. Jiang, J. Guo, J. Li, X. Peng, B. Hong, X. Wang, H. Ge, Chem. Eng. J. 381 (2020) 122596.
23.D. Wang, H. Duan, J. Lü, C. Lü, J. Mater. Chem. A 5 (2017) 5088-5097.
24.M. Zhang, Y. Li, Z. Su, G. Wei, Polym. Chem. 6 (2015) 6107-6124.
25.Y. Deng, Y. Cai, Z. Sun, J. Liu, C. Liu, J. Wei, W. Li, C. Liu, Y. Wang, D. Zhao, J. Am. Chem. Soc. 132 (2010) 8466-8473.
26.K.Y. Cho, Y.S. Yeom, H.Y. Seo, P. Kumar, A.S. Lee, K.Y. Baek, H.G. Yoon, J. Mater. Chem. A. 3 (2015) 20471-20476.
27.E.G. Bordejé, Y. Liu, D.S. Su, C.P. Huu, J. Mater. Chem. A 5 (2017) 22408-22441.
28.X.M. Liu, Z.D. Huang, S.W. Oh, B. Zhang, P.C. Ma, M.M. Yuen, J.K. Kim, Compos. Sci. Technol. 72 (2012) 121-144.
29.T. Hayashi, M. Endo, Compos. B. Eng. 42 (2011) 2151-2157.
30.V. Selvaraj, M. Alagar, K.S. Kumar, Appl. Catal. B 75 (2007) 129-138.
31.B Mutharani, P. Ranganathan, S.M. Chen, Sens. Actuators B Chem. 304 (2020) 127232.
32.B. Mutharani, P. Ranganathan, S.M. Chen, Sens. Actuators B Chem. 304 (2020) 127361.
33.L. Shen, A. Pich, D. Fava, M. Wang, S. Kumar, C. Wu, G. D. Scholes, M. A. Winnik, J. Mater. Chem. 18 (2008) 763-770.
34.S. Shah, A. Pal, R. Gude, S. Devi, Eur. Polym. J. 46 (2010) 958-967.
35.J. Zhu, M. Dou, M. Lu, X. Xiang, X. Ding, W. Liu, M. Li, Appl. Catal. A: Gen. 575 (2019) 11-19.
36.L. Bandžuchová, Ľ. Švorc, J. Sochr, J. Svítková, J. Chýlková, Electrochim. Acta. 111 (2013) 242-249.
37.J.W. Whittaker, J. Osteryoung, J. Agric. Food. Chem. 28 (1980) 89-94.
38.L. Janíková-Bandžuchová, R. Šelešovská, J. Chýlková, V. Nesnídalová, Anal. Lett. 49 (2016) 19-36.
39.D.D. Gilbert, J.M. Mann, J. environ. anal. chem. 2 (1973) 221-228.
40.R. Singh, S.N. Naik, R. Prasad, J. Chem. Health. Saf. 13 (2006) 12-19.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔