跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/19 02:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐銘群
研究生(外文):HSU, MING-CHUN
論文名稱:低電磁干擾降壓轉換器與零電流偵測V2降壓轉換器
論文名稱(外文):A Low-EMI Buck Converter and A V2 Buck Converter with Zero-Current Detector
指導教授:黃育賢陳建中陳建中引用關係
指導教授(外文):HWANG, YUH-SHYANCHEN, JIANN-JONG
口試委員:黃育賢陳建中郭建宏宋國明
口試委員(外文):HWANG, YUH-SHYANCHEN, JIANN-JONGKUO, CHIEN-HUNGSUNG, GUO-MING
口試日期:2020-07-23
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:89
中文關鍵詞:降壓轉換器三角積分調變器自適應導通時間控制器零電流偵測
外文關鍵詞:Buck ConverterDelta-Sigma ModulatorAdaptive On-Time ControllerZero-Current Detector
相關次數:
  • 被引用被引用:0
  • 點閱點閱:332
  • 評分評分:
  • 下載下載:116
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出具有低電磁干擾的降壓轉換器與具有零電流偵測的自適應導通時間控制降壓轉換器,第一顆提出改善PWM模式輸出雜訊的缺點,控制電路使用三角積分調變器,使用其電路超取樣定理及雜訊移頻將雜訊推往高頻,再藉由降壓轉換器LC濾波器濾掉此雜訊。為了改善電路的暫態響應,因此增加暫態加速迴路,當負載切換時,能透過此迴路加快暫態響應。此晶片使用TSMC 0.35-μm 2P4M製程實現,其晶片輸入電壓為3~3.6 V、輸出電壓為1~2.5 V、暫態響應分別為3、2.5 us、暫態電壓分別為15、12 mV、晶片面積大小為1.23×1.42 mm2。
第二顆提出不隨輸入輸出電壓改變切換頻率的自適應導通時間控制器,且利用電流感測技術應用於零電流偵測,當負載操作於輕載時,能提升輕載效率,並透過快速迴路,當負載切換時能透過此迴路加快暫態響應。此晶片使用TSMC 0.18-μm 1P6M製程來實現,其晶片輸入電壓為1.8~2.2 V、輸出電壓為0.5~1 V、暫態響應都為2 us、暫態電壓分別為27、26 mV,晶片面積大小為1.08×1.18 mm2。

This thesis proposes a low-EMI buck converter and a V2 buck converter with zero-current detector. The first chip is proposed to improve the drawback of conventional PWM for its switching noise on the output. Therefore, the delta-sigma modulation is used in this converter which utilizes oversampling theorem and noise-shaping to spread the harmonic tones on output spectrum. To improve the converter’s transient response and hence adding the transient-enhanced circuit to the converter. When the load current is changed, the transient-enhanced circuit will improve the recovery time through the OTA. The chip has been fabricated with TSMC 0.35-μm 2P4M process. The input voltage range is 3~3.6 V and output voltage range is 1~2.5 V. The recovery times are 3 us and 2.5 us and the transient voltages are 15 mV and 12 mV when the load current changes from 50 to 500 mA and from 500 to 50 mA, respectively. The chip area is roughly 1.23×1.42 mm2.
The second chip is proposed with the adaptive on-time controller, which performs without changing the frequency when the input or output voltage is changed. Furthermore, the current-sensing technique is used in zero-current detector, which can improve the efficiency when the converter operates in a low current. Moreover, adding extra feedforward loop can improve the transient response. When the load current is changed, the feedforward loop will directly control power transistors on/off so that the converter will achieve better recovery time. The chip has been fabricated with TSMC 0.18-μm 1P6M process. The input voltage range is 1.8~2.2 V and output voltage range is 0.5~1 V. The recovery times are both 2 us and the transient voltages are 27 mV and 26 mV when the load current changes from 50 to 500 mA and from 500 to 50 mA, respectively. The chip area is roughly 1.08×1.18 mm2.

摘要…………………………………………………………………………………………….i
ABSTRACT…………………………………………………………………………………...ii
誌謝…………………………………………………………………………………………...iv
目錄……………………………………………………………………………………….…...v
圖目錄……………………………………………………………………………..………...viii
表目錄……………………………………………………………………………..………...xiii
第一章 序論………………………………………………………………...…………………1
1.1 研究背景…………………………………………………………………………….1
1.2 研究動機與目的…………………………………………………………………….2
1.3 論文架構…………………………………………………………………………….2
第二章 切換式降壓轉換器原理…………………………………………...…………………3
2.1 降壓轉換器………………………………………………………………….……….3
2.1.1 連續導通模式………………………………………….……………………..3
2.1.2 非連續導通模式……………………………………….……………………..6
2.1.3 邊界導通模式……………………………………….………………………..8
2.2 切換式轉換器規格與參數定義………………………………………………..........9
2.2.1 線性調節率………………………………………….………………………..9
2.2.2 負載調節率……………………………………….……………………..........9
2.2.3 輸出電壓漣波……………………………………….………………………..9
2.2.4 暫態響應……………………………………….……………………………10
2.2.5 效率……………………………………….…………………………………12
2.3 切換式降壓轉換器控制模式與技術……………………………............................13
2.3.1 漣波模式………………………………………….…………………………13
2.3.2 電壓模式………………………………………….…………………………16
2.3.3 電流模式………………………………………….…………………………17
第三章 二階連續時間三角積分調變器與快速暫態低電磁干擾降壓轉換器……….……19
3.1 三角積分調介紹……………………………………………………………………19
3.2 取樣定理……………………………………………………………………………21
3.2.1 奈奎斯取樣……………………………………………………….…………22
3.2.2 超取樣………………………………………………………………….……22
3.3 量化誤差……………………………………………………………………………23
3.4 雜訊移頻……………………………………………………………………………26
3.5 二階三角積分調變器………………………………………………………………29
3.6 電路架構簡介………………………………………………………………………31
3.6.1 軌對軌轉導放大器……………………………………….…………………32
3.6.2 暫態加速電路…………………………………………….…………………32
3.6.3 1bit 量化器…………………………………………….…………………….34
3.6.4 1bit DAC…………………………………………….……………………….35
3.6.5 Type III 補償器…………………………………….……………….……….35
3.6.6非重疊電路………………………………………….……………………….37
3.6.7驅動電路…………………………………………….……………………….37
3.7 電路模擬……………………………………………………………………………38
3.8 整體電路佈局與量測結果…………………………………………………………44
3.8.1 晶片佈局………………………………………………….…………………44
3.8.2 晶片腳位定義…………………………………………….…………………45
3.8.3 量測環境………………………………………………….…………………47
3.8.4 量測結果………………………………………………….…………………48
3.8.5 規格表與相關文獻比較………………………………….…………………55
第四章 具有零電流感測V2自適應導通時間控制降壓轉換器……………………………57
4.1 電路架構簡介………………………………………………………………………57
4.1.1 自適應導通時間控制器………………………………….…………………58
4.1.2磁滯比較器…………….………………………………….…………………59
4.1.3運算放大器…………….………………………………….…………………60
4.1.4軌對軌電流感測電路….………………………………….…………………62
4.1.5零電流偵測器………….………………………………….…………………62
4.1.6 Type III 補償器……..….……………...………………….…………………64
4.1.7非重疊電路…………….………………………………….…………………65
4.1.8驅動電路……………….………………………………….…………………66
4.2 電路模擬……………………………………………………………………………67
4.3 整體電路佈局與量測結果…………………………………………………………73
4.3.1晶片佈局……………….………………………………….…………………73
4.3.2晶片腳位定義………….………………………………….…………………74
4.3.3量測環境……………….………………………………….…………………76
4.3.4量測結果……………….………………………………….…………………77
4.3.5規格表與相關文獻比較.………………………………….…………………83
第五章 結論與未來展望……………………………………..……………………………...85
5.1 結論…………………………………………………………………………………85
5.2 未來展望……………………………………………………………………………86
參考文獻………………..……………………………………..……………………………...87

1.梁適安,交換式電源供給器之理論與實務設計,全華書局,2001。
2.K. -I. Hwu, J. -J. Shieh and W. -Z. Jiang, "Analysis and design of type 3 compensator for the buck converter based on PSIM," 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, 2018, pp. 1010-1015.
3.C. Basso, Designing control loops for linear and switching power supplies, Norwood, MA, USA: Artech House, 2012.
4.Kaiwei Yao, Yuancheng Ren and F. -C. Lee, "Critical bandwidth for the load transient response of Voltage regulator modules," IEEE Trans. Power Electron., Vol. 19, no. 6, pp. 1454-1461, Nov. 2004.
5.R. Redl and J. Sun, "Ripple-based control of switching regulators—an overview," IEEE Trans. Power Electron., vol. 24, no. 12, pp. 2669-2680, Dec. 2009.
6.C. -C. Fang and C. -J. Chen, "Subharmonic instability limits for v2 -controlled buck converter with outer loop closed/open," IEEE Trans. Power Electron., Vol. 31, no. 2, pp. 1657-1664, Feb. 2016.
7.Y. Yan, F. -C. Lee, P. Mattavelli and S. Tian, "Small signal analysis of v2 control using equivalent circuit model of current mode controls," IEEE Trans. Power Electron., Vol. 31, no. 7, pp. 5344-5353, Jul. 2016.
8.S. Tian, F. -C. Lee, P. Mattavelli, K. Cheng and Y. Yan, "Small-signal analysis and optimal design of external ramp for constant on-time v2 control with multilayer ceramic caps," IEEE Trans. Power Electron., Vol. 29, no. 8, pp. 4450-4460, Aug. 2014.
9.J. -J. Chen, Y. -S. Hwang, B. -H. Hwang, Y. -C. Jhang and Y. -T. Ku, "A dual-mode fast-transient average-current-mode buck converter without slope-compensation," 2018 7th International Symposium on Next Generation Electronics (ISNE), Taipei, 2018, pp. 1-4.
10.W. Yan, W. Li and R. Liu, "A noise-shaped buck dc–dc converter with improved light-load efficiency and fast transient response," IEEE Trans. Power Electron., Vol. 26, no. 12, pp. 3908-3924, Dec. 2011.
11.M. K. Alghamdi and A. A. Hamoui, "A spurious-free switching buck converter achieving enhanced light-load efficiency by using a ∑▒∆-modulator controller with a scalable sampling frequency," IEEE J. Solid-State Circuits, Vol. 47, no. 4, pp. 841-851, Apr. 2012.
12.J. -J. Chen, Y. -S. Hwang, J. -H. Yu, Y. -T. Ku and C. Yu, "A low-EMI buck converter suitable for wireless sensor networks with spur-reduction techniques," IEEE Sens. J., vol. 16, no. 8, pp. 2588-2597, Apr. 2016.
13.Y. -S. Hwang, J. -J. Chen, W. -J. Hou, P. -H. Liao and Y. -T. Ku, "A 10-us transient recovery time low-EMI dc-dc buck converter with Δ – Σ modulator," IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 24, no. 9, pp. 2983-2992, Sep. 2016.
14.J. -J. Chen, Y. -S. Hwang, C. -S. Jheng, Y. -T. Ku and C. -C. Yu, "A low-electromagnetic-interference buck converter with continuous-time delta-sigma-modulation and burst-mode techniques," IEEE Trans. Ind. Electron., vol. 65, no. 9, pp. 6860-6869, Sep. 2018.
15.Y. -K. Cho, M. -D. Kim and C. -Y. Kim, "A low switching noise and high-efficiency buck converter using a continuous-time reconfigurable delta-sigma modulator," IEEE Trans. Power Electron., Vol. 33, no. 12, pp. 10501-10511, Dec. 2018.
16.Y. –K. Cho and K. -C. Lee, "Noninverting buck–boost dc–dc converter using a duobinary-encoded single-bit delta-sigma modulator," IEEE Trans. Power Electron., vol. 35, no. 1, pp. 484-495, Jan. 2020.
17.Y. -S. Hwang, J. -J. Chen, J. Yang and Y. -T. Ku, "A low-EMI continuous-time delta-sigma-modulator buck converter with transient response eruption techniques," IEEE Trans. Ind. Electron., vol. 67, no. 8, pp. 6854-6863, Aug. 2020.
18.C. -S. Huang, C. -Y. Wang, J. -H. Wang and C. -H. Tsai, "A fast-transient quasi-V2 switching buck regulator using AOT control," in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2011, pp. 53-56.
19.J. -J. Chen, F. -C. Yang and C. -C. Chen, "A new monolithic fast-response buck converter using spike-reduction current-sensing circuits," IEEE Trans. Ind. Electron., Vol. 55, no. 3, pp. 1101-1111, Mar. 2008.
20.Yuan Gao, Shenglei Wang, Haiqi Li, Leicheng Chen, Shiquan Fan and Li Geng, "A novel zero-current-detector for DCM operation in synchronous converter," 2012 IEEE International Symposium on Industrial Electronics, pp. 99-104.
21.M. Nashed and A. A. Fayed, "Current-mode hysteretic buck converter with spur-free control for variable switching noise mitigation," IEEE Trans. Power Electron., vol. 33, no. 1, pp. 650-664, Jan. 2018.
22.D. -H. Jung, K. Kim, S. Joo and S. -O. Jung, "0.293-mm2 fast transient response hysteretic quasi-v2 dc–dc converter with area-efficient time-domain-based controller in 0.35-um CMOS," IEEE J. Solid-State Circuits, vol. 53, no. 6, pp. 1844-1855, Jun. 2018.
23.J. -J. Chen, Y. -S. Hwang, C. -H. Chang, Y. -T. Ku and C. Yu, "A sub-1 μs fast-response buck converter with adaptive and frequency-locked controlled techniques," IEEE Trans. Ind. Electron., vol. 66, no. 3, pp. 2198-2203, Mar. 2019.
24.Y. -C. Hsu, C. -Y. Ting, L. -S. Hsu, J. -Y. Lin and C. -C. Chen, "A transient enhancement dc–dc buck converter with dual operating modes control technique," IEEE Trans. Circuits Syst. II: Express Briefs, vol. 66, no. 8, pp. 1376-1380, Aug. 2019.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊