跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 21:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李齊
研究生(外文):LI, CHI
論文名稱:以梯度提升決策樹演算法實現流速血壓估測之可行性分析
論文名稱(外文):Feasibility Analysis for Velocity Blood Pressure Estimation Implemented by Gradient Boosting Decision Tree Algorithm
指導教授:李仁貴李仁貴引用關係
指導教授(外文):LEE, REN-GUEY
口試委員:林仲志曾傳蘆李仁貴
口試委員(外文):LIN, CHUNG-CHIHTSENG, CHWAN-LULEE, REN-GUEY
口試日期:2020-07-14
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:72
中文關鍵詞:高血壓脈波傳遞時間梯度提升決策樹
外文關鍵詞:HypertensivePulse transit timeGradient boostingDecision tree
相關次數:
  • 被引用被引用:1
  • 點閱點閱:434
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
ABSTRACT ii
致謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
1.3 論文架構 3
第二章 研究背景與相關知識 5
2.1 血壓與高血壓的關係 5
2.2 傳統血壓量測方法 7
2.2.1 聽診法 7
2.2.2 共振法 8
2.3 光體積描記器 9
2.4 脈搏傳遞時間 10
2.5 決策樹 11
2.6 集成學習 12
2.7 梯度提升決策樹 13
2.8 血壓估測相關文獻 15
第三章 系統設計與實驗方法 20
3.1 系統簡介 20
3.1.1 穿戴式手錶 21
3.1.2 實驗介面設計 22
3.2 實驗設計方法與流程 24
3.2.1 實驗對象 24
3.2.2 驗證標準 25
3.2.3 實驗流程 25
3.3 資料分析方法 27
3.3.1 資料前處理與模型實驗設計 27
3.3.2 回歸樹 28
3.3.3 梯度提升決策樹估測模型 29
3.3.4 硬體規格 31
3.4 分級標準 32
第四章 實驗結果及討論 34
4.1 資料集分析 34
4.1.1 研究個案基本資料 34
4.1.2 研究資料集分佈分析 35
4.2 輸入特徵相關性分析 39
4.3 模型估測結果 44
4.3.1 不同比例資料之血壓估算結果 44
4.3.2 不同樹的數量與深度之血壓估算結果 47
4.3.3 不同的學習率之血壓估算結果 49
4.3.4 布蘭德奧特曼分析結果 53
4.3.5 不同族群資料之血壓估算結果 55
4.4 不同特徵組合之血壓估測結果 58
4.5 不同血壓估測模型比較結果 61
第五章 結論與未來展望 66
5.1 結論 66
5.2 未來展望 67
參考文獻 68

[1]衛生福利部統計處,108年國人死因統計結果[Online]. Available: https://www.mohw.gov.tw/cp-4631-54482-1.html (last date visited:Jun. 23, 2020)
[2]衛生福利部統計處,108年度死因統計[Online]. Available: https://dep.mohw.gov.tw/DOS/lp-4927-113.html (last date visited:Jun. 23, 2020)
[3]B. Williams, G. Mancia, W. Spiering, E. Agabiti Rosei et al., "2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH),"European heart journal, vol. 39, no.33, 2018, pp. 3021-3104.
[4]L. Charles, J. Triscott and B. Dobbs, "Secondary hypertension: discovering the underlying cause,"American family physician, vol. 96, no.7, 2017, pp. 453-461.
[5]T. Ishimitsu, "The start of a new review series: recent advances in the management of secondary hypertension,"Hypertension Research, vol. 43, no.8, 2020, pp. 731-732.
[6]C. C. Diaconu, G. N. Dediu and M. A. Iancu, "Drug-induced arterial hypertension–a frequently ignored cause of secondary hypertension: a review,"Acta cardiologica, vol. 73, no.6, 2018, pp. 511-517.
[7]M. Forouzanfar, H. R. Dajani, V. Z. Groza, M. Bolic et al., "Oscillometric blood pressure estimation: past, present, and future,"IEEE reviews in biomedical engineering, vol. 8, 2015, pp. 44-63.
[8]L. Geddes, M. Voelz, C. Combs, D. Reiner et al., "Characterization of the oscillometric method for measuring indirect blood pressure,"Annals of biomedical engineering, vol. 10, no.6, 1982, pp. 271-280.
[9]C.-T. Lin, S.-H. Liu, J.-J. Wang and Z.-C. Wen, "Reduction of interference in oscillometric arterial blood pressure measurement using fuzzy logic,"IEEE Transactions on Biomedical Engineering, vol. 50, no.4, 2003, pp. 432-441.
[10]D. Biswas, N. Simões-Capela, C. Van Hoof and N. Van Helleputte, "Heart rate estimation from wrist-worn photoplethysmography: A review,"IEEE Sensors Journal, vol. 19, no.16, 2019, pp. 6560-6570.
[11]R. Gircys, A. Liutkevicius, E. Kazanavicius, V. Lesauskaite et al., "Photoplethysmography-based continuous systolic blood pressure estimation method for low processing power wearable devices,"Applied sciences, vol. 9, no.11, 2019, pp. 2236.
[12]M. Elgendi, R. Fletcher, Y. Liang, N. Howard et al., "The use of photoplethysmography for assessing hypertension,"NPJ digital medicine, vol. 2, no.1, 2019, pp. 1-11.
[13]Y. Xu, P. Ping, D. Wang and W. Zhang, "Analysis for the Influence of ABR Sensitivity on PTT-Based Cuff-Less Blood Pressure Estimation before and after Exercise,"Journal of healthcare engineering, vol. 2018, 2018, pp. 5396030.
[14]G. Thambiraj, U. Gandhi, V. Devanand and U. Mangalanathan, "Noninvasive cuffless blood pressure estimation using pulse transit time, Womersley number, and photoplethysmogram intensity ratio,"Physiological measurement, vol. 40, no.7, 2019, pp. 075001.
[15]X. Ding and Y.-T. Zhang, "Pulse transit time technique for cuffless unobtrusive blood pressure measurement: from theory to algorithm,"Biomedical engineering letters, vol. 9, no.1, 2019, pp. 37-52.
[16]T. H. Huynh, R. Jafari and W.-Y. Chung, "Noninvasive cuffless blood pressure estimation using pulse transit time and impedance plethysmography,"IEEE Transactions on Biomedical Engineering, vol. 66, no.4, 2018, pp. 967-976.
[17]D. M. Bard, J. I. Joseph and N. Van Helmond, "Cuff-less methods for blood pressure telemonitoring,"Frontiers in cardiovascular medicine, vol. 6, 2019, pp. 40.
[18]V. R. Ripoll and A. Vellido, "Blood pressure assessment with differential pulse transit time and deep learning: a proof of concept,"Kidney Diseases, vol. 5, no.1, 2019, pp. 23-27.
[19]L. Breiman, J. Friedman, C. J. Stone and R. A. Olshen, Classification and regression trees: CRC press,1984.
[20]M. Kearns, "Thoughts on hypothesis boosting,"Unpublished manuscript, vol. 45, 1988, pp. 105.
[21]L. Breiman, "Bagging predictors,"Machine learning, vol. 24, no.2, 1996, pp. 123-140.
[22]J. H. Friedman, "Greedy function approximation: a gradient boosting machine,"Annals of statistics, vol. 2001, pp. 1189-1232.
[23]林崇祥,使用 GBRT 預測短期國道交通路況,碩士論文,國立交通大學,資訊科學與工程研究所,新竹,2018。
[24]H. Tabrizchi, M. Tabrizchi and H. Tabrizchi, "Breast cancer diagnosis using a multi-verse optimizer-based gradient boosting decision tree,"SN Applied Sciences, vol. 2, no.4, 2020, pp. 1-19.
[25]Z. Zhang, Y. Zhao, A. Canes, D. Steinberg et al., "Predictive analytics with gradient boosting in clinical medicine,"Annals of translational medicine, vol. 7, no.7, 2019, pp. 152.
[26]J. Hu and J. Min, "Automated detection of driver fatigue based on EEG signals using gradient boosting decision tree model,"Cognitive neurodynamics, vol. 12, no.4, 2018, pp. 431-440.
[27]姚雅芳,基於集成式學習利用 ECG 與 PPG 訊號之非侵入式動態血壓值估計方法,碩士論文,國立中興大學資訊科學與工程學系,臺中,2016。
[28]郭惠嘉,基於穿戴式裝置之脈搏傳輸時間與生理差異於血壓估測的關係性分析,碩士論文,國立台北科技大學,電子工程所,台北,2016。
[29]鄭乃銘,利用 PPG 波形技術建構連續的血壓監測系統,碩士論文,國立成功大學,生物醫學工程學系,台南,2016。
[30]Y. Zhang and Z. Feng. "A SVM method for continuous blood pressure estimation from a PPG signal,"Proceedings of the 9th International Conference on Machine Learning and Computing, 2017.pp. 128-132.
[31]黃玉婷,自動分類演算法應用於血壓估算之研究,碩士論文,台北科技大學,電子工程所,台北,2017。
[32]M. Yoshioka and S. Bounyong. "Regression-forests-based estimation of blood pressure using the pulse transit time obtained by facial photoplethysmogram,"2017 International Joint Conference on Neural Networks (IJCNN), 2017.pp. 3248-3253.
[33]M. Simjanoska, M. Gjoreski, M. Gams and A. Madevska Bogdanova, "Non-invasive blood pressure estimation from ECG using machine learning techniques,"Sensors, vol. 18, no.4, 2018, pp. 1160.
[34]廖尉全,類神經網路搭配聚類分析應用於血壓估測之研究,碩士論文,台北科技大學,電子工程所,台北,2018。
[35]B. Zhang, H. Ren, G. Huang, Y. Cheng et al., "Predicting blood pressure from physiological index data using the SVR algorithm,"BMC bioinformatics, vol. 20, no.1, 2019, pp. 109.
[36]S. Yang, W. S. W. Zaki, S. P. Morgan, S.-Y. Cho et al., "Blood pressure estimation with complexity features from electrocardiogram and photoplethysmogram signals,"Optical and Quantum Electronics, vol. 52, no.3, 2020, pp. 1-16.
[37]李航, 統計學習方法,北京:清華大學出版社,2012,第67-71頁.
[38]Association for the Advancement of Medical Instrumentation American National Standard Ansi/Aamisp: 10 Manual, or automated sphygmomanometers. Arlington: AAMI; 2002.
[39]E. O’brien, J. Petrie, W. Littler, M. De Swiet et al., "The British Hypertension Society protocol for the evaluation of blood pressure measuring devices,"J hypertens, vol. 11, no.Suppl 2, 1993, pp. 43-62.
[40]I. S. Association, "IEEE standard for wearable cuffless blood pressure measuring devices,"IEEE Std, vol. 2014, pp. 1708-2014.
[41]F. Mouney, T. Tiplica, M. Hallab, M. Dinomais et al., "Towards a Smartwatch for Cuff-Less Blood Pressure Measurement Using PPG Signal and Physiological Features,"EAI International Conference on IoT Technologies for HealthCare, 2019.pp. 67-76.
[42]H. F. Golino, L. S. d. B. Amaral, S. F. P. Duarte, C. M. A. Gomes et al., "Predicting increased blood pressure using machine learning,"Journal of obesity, vol. 2014.
[43]D. Giavarina, "Understanding bland altman analysis,"Biochemia medica: Biochemia medica, vol. 25, no.2, 2015, pp. 141-151.

電子全文 電子全文(網際網路公開日期:20250811)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊