(3.231.29.122) 您好!臺灣時間:2021/02/26 01:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王建鈞
研究生(外文):WANG, JIAN-JUN
論文名稱:應用於5G毫米波之寬頻貼片陣列天線
論文名稱(外文):Broadband Patch Array Antenna for 5G Millimeter Wave
指導教授:鄭瑞清
指導教授(外文):CHENG, JUI-CHING
口試委員:李士修金國生丘增杰鄧聖明
口試委員(外文):LI, SHR-SHIOUJIN, GUO-SHENGCHIOU, TZENG-JIEDENG, SHENG-MING
口試日期:2020-07-31
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:101
中文關鍵詞:第五代通訊毫米波寬頻天線貼片天線陣列
外文關鍵詞:Millimeter-WaveBroadband AntennaFifth-Generation CommunicationsPatch AntennaArray
相關次數:
  • 被引用被引用:0
  • 點閱點閱:50
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出了應用於第五代通訊的毫米波寬頻天線架構,以貼片天線為主體,利用不同金屬層堆疊的方式,當作寄生元件提高耦合效應,形成多個共振頻率,藉此達到增加頻寬效果,且利用堆疊方式也能增加天線增益值與指向性。除此之外,藉由開槽耦合饋入的方式,不僅頻寬微幅上升,也能使陣列天線佈線與貼片輻射金屬層分開,避免傳輸線與輻射面過近相互干擾,且開槽耦合饋入之微帶線殘段部分能使寬頻天線更容易匹配。最後天線操作頻率從23.36 – 42.23 GHz 且|S11|皆小於-10 dB,而目標頻帶24 – 40 GHz 之天線量測增益值約7.6 –10.1 dBi,且模擬效率都大於94%;最後利用平行並聯饋入法設計1×2、2×2、4×4、8×8 陣列天線,其中8×8 陣列天線量測增益值約為21.45 – 24.37 dBi,與模擬相差0.08 – 1.5 dBi。此寬頻天線架構不僅滿足所有第五代通訊毫米波頻段的規範,更大的頻寬還能夠包含尚未訂定頻段的可行性。
This paper proposes a millimeter-wave broadband antenna for fifth-generation communications. It uses patch antennas and different metal layer stacking methods as parasitic elements to improve the coupling effect and form multiple resonances. The stacking method can also increase the antenna gain, bandwidth and directivity. In addition, the slot-coupling feed not only increases the bandwidth slightly, but also separates the array antenna feed network from the radiating patch elements, avoiding interference due to close proximity between the transmission lines and the radiating elements. The open stubs of the fed microstrip lines can make the broadband antenna easier to match. Finally, the 10-dB bandwidth of the antenna is 23.36 – 42.23 GHz, and the measured gain in the target band of 24 – 40 GHz is 8.5 – 10.1 dBi. The simulated efficiency is greater than 94%. Finally, parallel feeds is used to design 1×2, 2×2, 4×4, and 8×8 array antennas. The measured realized gain of the 8×8 array antenna is 21.45 – 24.37 dBi, different from the simulation by 0.08 – 1.5 dBi. This broadband antenna architecture not only meets the specifications of all fifth-generation communication millimeter wave bands, but the larger bandwidth can also include future extension of frequency bands.
摘要 i
ABSTRACT ii
致謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 序論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的 2
1.4 章節概要 4
第二章 天線原理 5
2.1 前言 5
2.2 微帶天線 6
2.3貼片天線分析 8
2.3.1 設計目的 8
2.3.2 饋入方式 9
2.3.3 理論介紹 13
2.4 堆疊貼片天線理論與結構分析 17
第三章 寬頻貼片天線設計 22
3.1 前言 22
3.2 設計流程 23
3.3 設計架構 26
3.3.1 參數分析 30
3.3.2 導通孔與探針接地面 38
3.4 實作量測與模擬比較 42
3.5 結果與討論 52
第四章 寬頻貼片天線陣列 57
4.1 前言 57
4.2 陣列天線基礎理論 58
4.3 1×2天線陣列 60
4.3.1 設計流程 60
4.3.2 四分之一波長阻抗轉換 61
4.3.3 1×2天線陣列匹配設計 62
4.3.4 實作量測與模擬結果比較 62
4.4 2×2天線陣列 70
4.4.1 設計流程與陣列阻抗匹配 70
4.4.2 實作量測與模擬結果比較 71
4.5 4×4天線陣列 79
4.5.1 設計流程與陣列阻抗匹配 79
4.5.2 實作量測與模擬結果比較 80
4.6 8×8天線陣列 88
4.6.1 設計流程與陣列阻抗匹配 88
4.6.2 實作量測與模擬結果比較 89
4.7 傳輸線損耗與前後比討論 96
第五章 結論 98
參考文獻 99
[1]L. Wang et al., “Wideband Dual-Polarized Binary Coding Antenna With Wide Beamwidth and Its Array for Millimeter-Wave Applications,” IEEE Antenna and Wireless Propagation Letters, vol. 19, no. 4, Apr. 2020.
[2]J. Yin et al., “Broadband Symmetrical E-Shaped Patch Antenna With Multimode Resonance for 5G Millimeter-Wave Applications,” IEEE Transactions on Antenna and Propagation, vol. 67, no. 7, Jul. 2019.
[3]T. Li and Z. N. Chen, “Design of Dual-Band Metasurface Antenna,” in International Workshop on Antenna Technology (iWAT), Nanjing, Mar. 2018.
[4]T. Li and Z. N. Chan, “Metasurface-Based Shared-Aperture 5G S-/K-Band Antenna Using Characteristic Mode Analysis,” IEEE Transactions on Antenna and Propagation, vol. 66, no. 12, Dec. 2018.
[5]T. Li and Z. N. Chan, “Wideband Sidelobe-Level Reduced Ka-Band Metasurface Antenna Array Fed by Substrate-Integrated Gap Waveguide Using Characteristic Mode Analysis,” IEEE Transactions on Antenna and Propagation, vol. 68, no. 3, Mar. 2020.
[6]H. Ullah and F. Tahir, “Broadband Planar Antenna Array for Future 5G Communication Standard,” IET Microwave Antenna and Propagation, vol. 13, no. 15, pp. 2661-2668, Aug. 2019.
[7]Y. X. Li, “A Bowtie-Slot Microstrip Patch Antenna with an H-Type Radiation Chip and U-Type Parasitic Patched in Ka-Band Using LTCC Technology,” in International Conference on Computational Problem-Solving (ICCP), China, Dec. 2012.
[8]M. Khalily et al., “Broadband mm-Wave Microstrip Array Antenna with Improved Radiation characteristics for Different 5G Applications,” IEEE Transactions on Antenna and Propagation, vol. 66, no. 9, Sep. 2018.
[9]M. Stanley et al., “A Dual-Band Dual-Polarized Stacked Patch Antenna for 28 GHz and 39 GHz 5G Millimeter-Wave Communication,” in European Conference on Antennas and Propagation (EuCAP), Poland, Jun. 2019.
[10]Y. He et al., “28/39-GHz Dual-Band Dual-Polarized Millimeter Wave Stacked Patch Antenna Array for 5G Applications,” in International Workshop on Antenna Technology (iWAT), Romania, May 2020.
[11]U. Rafique, H. Khalil, and S. U. Rehman, “Dual-Band Microstrip Patch Antenna Array for 5G Mobile Communications,” in Progress in Electromagnetics Research Symposium - Fall (PIERS - FALL), Singapore, Feb. 2018.
[12]J. Xu et al., “A Wideband U-Slot Microstrip Patch Antenna for Large-Angle mmW Bean Scanning,” in IEEE International Conference on Computer and Communication Engineering Technology (CCET), China, Nov. 2018.
[13]C. X. Mao, S. Gao, and Y. Wang, “Broadband High-Gain Beam-Scanning Antenna Array for Millimeter-Wave Applications,” IEEE Transactions on Antenna and Propagation, vol. 65, no. 9, Sep. 2017.
[14]J. Xu et al., ”Wideband, Low-Profile Patch Array Antenna with Corporate Stacked Microstrip and Substrate Integrated Waveguide Feeding Structure,” IEEE Transactions on Antenna and Propagation, vol. 67, no. 2, Feb. 2019.
[15]D. M. Pozar,Microwave Engineering, 3rd ed., John Wiley and Sons, 2005.
[16]W. L. Stutzman and G. A. Thiele ,Antenna Theory and Design,2nd ed., John Wiley and Sons,1998.
[17]W. S. Chen and Y. C. Lin, “Design of 2×2 Microstrip Patch Array Antenna for 5G C-Band Access Point Applications,” in IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), Japan, Nov. 2018.
[18]P. S. Kumar and B. C. Mohan, “Dual-Band Microstrip Patch Antenna Design with Inverted-E Slot and U-Slot,” in International Conference on Industrial and Information Systems (ICIIS), India, Jan. 2018.
[19]A. Das and R. K. Mishra, “Optimized Design of H-Slot Antenna for Bandwidth Improvement,” in IEEE Power, Communication and Information Technology Conference (PCITC), India, Mar. 2016.
[20]S. Liu et al., “Single-Layer Single-Patch Four-Band Asymmetrical U-Slot Patch Antenna,” IEEE Transactions on Antenna and Propagation, vol. 62, no. 9, Sep. 2014.
[21]K. Mydhili, M. P. Paarvathi, and M. K. Prasanthi, “Design and Simulation of Edge Fed Microstrip Patch Antenna Array,” in International Conference on I-SMAC, India, Feb. 2019.
[22]Y. L. Chang et al., “A K-Band Series-Fed Microstrip Array Antenna with Low Sidelobe for Anticollision Radar Application,” in Asia-Pacific Conference on Antennas and Propagation (APCAP), China, Jul. 2018.

電子全文 電子全文(網際網路公開日期:20230811)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔