跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/18 12:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王俊傑
研究生(外文):WANG, JUN-JIE
論文名稱:高效率無帶外突波之四相位脈衝寬度調變功率放大系統
論文名稱(外文):High-efficiency quad-phase pulse-modulated power amplification system without out-of-band spurs
指導教授:楊濠瞬
指導教授(外文):YANG, HAO-SHUN
口試委員:陳怡然陳昭宏唐志淳楊濠瞬
口試委員(外文):CHEN, YI-JAN EmeryCHEN, JAU-HORNGTANG, CHIH-CHUNYANG, HAO-SHUN
口試日期:2020-07-31
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:66
中文關鍵詞:長期演進技術包絡消除與重建技術功率放大器功率結合器吸收式濾波器
外文關鍵詞:long-term evolutionenvelope elimination and restorationpower amplifiercouplerabsorptive filter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:192
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
ABSTRACT ii
誌謝 iv
Contents v
List of Figures vii
List of Tables xi
Chapter 1 Introduction 1
1.1 Background 1
1.2 Literature Review 4
1.3 Motivation of the Dissertation 8
1.4 Organization of the Dissertation 9
Chapter 2 Absorptive Filter 11
2.1 Reflective and Absorptive Filter 11
2.2 Even and Odd Mode Analysis and Reflectionless Condition 12
2.3 Lumped Absorptive Filter 13
2.3.1 Frequency Transformations 14
2.3.2 Lumped Absorptive Band-pass Filter Implementation 17
2.4 Transmission-Line Absorptive Filter 18
2.4.1 Derivation of Band-Pass Absorptive Transmission line Filter 18
2.4.2 The Three-Port Couple Transmission-Line Identity 21
2.4.3 The Component Values of The Completed Network 24
2.4.4 The Reversed Input Coupled Type Absorptive Band-Pass Filter 27
2.5 Implement and Measurement Results 30
Chapter 3 Broadband 90-Degree Coupler 36
3.1 The Literature of Coupler Review 36
3.2 Symmetrical Coupled-Transmission-Line Coupler 40
3.3 Implementation and Measurement Results 42
Chapter 4 4-Way PWM Using the Couplers and Designed Absorptive Filter 47
4.1 The RF Power Amplifier Design 47
4.2 Single Phase PWM 50
4.3 Dual-Phase PWM With Broadband Coupler 54
4.4 Quad-Phase PWM With Broadband Coupler 59
Chapter 5 Conclusions 62
Reference 64


[1] G. Hanington, Pin-Fan Chen, Peter M. Asbeck, and Lawrence E. Larson, “High-Efficiency Power Amplifier Using Dynamic Power-Supply Voltage for CDMA Applications,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 8, pp. 1471–1476, Aug. 1999.
[2] A. Afsahi, A. Behzad, V. Magoon, and L. E. Larson, “Single-Sideband Transmission by Envelope Elimination and Restoration,” IEEE Proceedings of the IRE, vol. 40, pp. 803–806, July. 1952.
[3] J.-H. Chen, K. U-Yen, and J. S. Kenney, “An envelope elimination and restoration power amplifier using a CMOS dynamic power supply circuit,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2004, vol. 3, pp. 1519–1522.
[4] F. Wang, D. Kimball, J. Popp, A. Yang, D. Lie, P. Asbeck, and L. Larson, “Wideband envelope elimination and restoration power amplifier with high efficiency wideband envelope amplifier for WLAN 802.11g applications,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2005, vol. 2, pp. 645–648.
[5] J.-H. Chen, P. Fedorenko, and J. S. Kenney, “A low voltage W-CDMA polar transmitter with digital envelope path gain compensation,” IEEE Microw.Wireless Compon. Lett., vol. 16, no. 7, pp. 428–430, Jul. 2006.
[6] K. Son, B. Koo, and S. Hong, “A CMOS Power Amplifier with a Built-In RF Predistorter
for Handset Applications,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 8, pp. 2571–
2580, Aug. 2012.
[7] J. Deng, D. Kimball, M. Kwak, C. Hsia, P. Draxler, and P. Asbeck, “SiGe PA with
Dual Dynamic Bias Control and Memoryless Digital Predistortion for WCDMA Handset
Applications,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1210–1221, 2006.
[8] M.Hassan, L.E. Larson, V. W. Leung, D. F. Kimball and P. M. Asbeck “A wideband CMOS/GaAs HBT envelope tracking power amplifier for 4G LTE mobile terminal applications,” IEEE Trans. Microw. Theory Tech, vol. 60, no. 5, pp. 1321–1330, May 2012.
[9] D. F. Kimball, J. Jeong, C. Hsia, P. Draxler, S Lanfranco, W. Nagy, K. Linthicum, L. E. Larson, and P. M. Asbeck, “High-efficiency envelope tracking W-CDMA base-station amplifier using GaN HFETs,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 11, pp. 3848–3856, Nov. 2006.
[10] J. Jeong, D. F. Kimball, M. Kwak, C. Hsia, P. Draxler, and P. M. Asbeck, “Wideband envelope tracking power amplifier with reduced bandwidth power supply waveforms and adaptive digital predistortion techniques,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 12, pp. 3307–3314, Dec. 2009.
[11] Mccune, Earl, “Polar transmitter principles,” in Dynamic Power Supply Transmitters: Envelope Tracking, Direct Polar, and Hybrid Combinations. Cambridge University Press, pp. 181, May. 2015.
[12] Y. Wang, “An improved Kahn transmitter architecture based on delta–sigma modulation,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2003, vol. 3, pp. 1327–1330.
[13] M. Taromaru, N. Ando, T. Kodera, and K. Yano, “An EER transmitter architecture with burst-width envelope modulation based on trianglewave comparison PWM,” in Proc. IEEE Int. Symp. PIMRC, Sep. 2007, pp. 1–5.
[14] C. Berland, I. Hibon, J. F. Bercher, M. Villegas, D. Belot, D. Pache, and V. Le Goascoz, “A transmitter architecture for nonconstant envelope modulation,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 1, pp. 13–17, Jan. 2006.
[15] M. Nielsen and T. Larsen, “A transmitter architecture based on delta–sigma modulation and switch-mode power amplification,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 8, pp. 735–739, Aug. 2007.
[16] J.-H. Chen, H.-S. Yang, and Y.-J.E. Chen, “A multi-level pulse modulated polar transmitter,”
IEEE Microw.Wireless Compon. Lett., vol. 20, no. 5, pp. 295–297, May. 2010.
[17] J.-H. Chen, H.-S. Yang, H.-C. Lin, and Y.-J. E. Chen, “A polar-transmitter architecture using multiphase pulsewidth modulation,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 2, pp. 244–252, Feb. 2011.
[18] Y.-S. Jeon, H.-S. Yang, and S. Nam, “A power re-use technique for improving power amplifier efficiency under load mismatch,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 6, pp. 1148–1154, Jun. 2001.
[19] H.-S. Yang, C.-W. Chang, and J.-H. Chen, “A highly efficient LTE pulse-modulated polar transmitter using wideband power recycling,” IEEE Trans. Microw. Theory Tech., vol. 63, no.12, pp. 4437–4443, Dec. 2015.
[20] 3rd Generation Partnership Project Tech. Specification Group, “User Equipment (UE) Radio Transmission and Reception (FDD),” Valbonne, France, Rep. 3GPP TS 36.101, 2014.
[21] “CDMA/GSM850 Tx SAW filter,” Taiyo Yuden Products, CITY, STATE/COUNTRY, FAR-F5KA-836M50-D4DF Data Sheet, Mar. 31, 2010. [Online]. Available: http://www.yuden.co.jp/us/prodcut/pdf/d4df_ver,2.1b.pdf .
[22] B. Francois et al., “Analysis of burst-mode RF PA with direct filter connection,” in Proc. IEEE The 40th European Microwave conf. Set. 2010, pp.974–977,
2012, pp. 1–3.
[23] M. A. Morgan, T. A. Boyd “Theoretical and Experimental Study of a New Class of Reflectionless Filter,” IEEE Trans. Microw. Theory Tech., vol. 59, no.5, pp. 1214–1221, May. 2011.
[24] D. M. Pozar, Microwave Engineering, 2nd ed. New York, NY, USA: Wiley, 1998.
[25] M. A. Morgan, T. A. Boyd “ Reflectionless Filter Structures,” IEEE Trans. Microw. Theory Tech., vol. 63, no.4, pp. 1263–1271, Apr. 2015.
[26] C.-W. Tang, C.- T. Tseng, and K.- C. Hsu, “Design of the Modified Planar Tandem Couplers With a Wide Passband,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 1, pp. 48-54, Jan. 2013..
[27] Mini-Circuits Inc., “Core & Wire 90 degree Hybrid “Available: https://www.minicircuits.com/pdfs/RPQ-820.pdf.
[28] E. G. Cristal, L. Young, “Theory and Tables of Optimum Symmetrical TEM-Mode Coupled-Transmission-Line Directional Couplers,” IEEE Trans. Microw. Theory Tech., vol. 13, no. 5, pp. 544-558, Sep. 1965.
[29] K. Hausmair et al. , “Aliasing-free digital pulse-width modulation for burst-mode RF transmitters,” IEEE Trans. Circuits Syst. I: Reg. papers, vol. 60, no. 2, pp. 415-427, Feb. 2013.
[30] J.-L. Woo, S. Park, U. Kim, and Y. Kwon, “Dynamic stack-controlled CMOS RF power amplifier for wideband envelope tracking,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 12, pp. 3452–3464, Dec. 2014.
[30] J.-L. Woo, S. Park, U. Kim, and Y. Kwon, “Dynamic stack-controlled CMOS RF power amplifier for wideband envelope tracking,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 12, pp. 3452–3464, Dec. 2014.
[31] D. Kang et al., “Impact of nonlinear on HBT Doherty power amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 9, pp. 3298–3307, Sep. 2013.
[32] R. Wu et al., “High-efficiency silicon-based envelope-tracking power amplifier design with envelope shaping for broadband wireless applications,” IEEE J. Solid-State Circuits, vol. 48, no. 9, pp. 2030–2040, Sep. 2013.

電子全文 電子全文(網際網路公開日期:20250824)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊