|
[1] G. Hanington, Pin-Fan Chen, Peter M. Asbeck, and Lawrence E. Larson, “High-Efficiency Power Amplifier Using Dynamic Power-Supply Voltage for CDMA Applications,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 8, pp. 1471–1476, Aug. 1999. [2] A. Afsahi, A. Behzad, V. Magoon, and L. E. Larson, “Single-Sideband Transmission by Envelope Elimination and Restoration,” IEEE Proceedings of the IRE, vol. 40, pp. 803–806, July. 1952. [3] J.-H. Chen, K. U-Yen, and J. S. Kenney, “An envelope elimination and restoration power amplifier using a CMOS dynamic power supply circuit,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2004, vol. 3, pp. 1519–1522. [4] F. Wang, D. Kimball, J. Popp, A. Yang, D. Lie, P. Asbeck, and L. Larson, “Wideband envelope elimination and restoration power amplifier with high efficiency wideband envelope amplifier for WLAN 802.11g applications,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2005, vol. 2, pp. 645–648. [5] J.-H. Chen, P. Fedorenko, and J. S. Kenney, “A low voltage W-CDMA polar transmitter with digital envelope path gain compensation,” IEEE Microw.Wireless Compon. Lett., vol. 16, no. 7, pp. 428–430, Jul. 2006. [6] K. Son, B. Koo, and S. Hong, “A CMOS Power Amplifier with a Built-In RF Predistorter for Handset Applications,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 8, pp. 2571– 2580, Aug. 2012. [7] J. Deng, D. Kimball, M. Kwak, C. Hsia, P. Draxler, and P. Asbeck, “SiGe PA with Dual Dynamic Bias Control and Memoryless Digital Predistortion for WCDMA Handset Applications,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1210–1221, 2006. [8] M.Hassan, L.E. Larson, V. W. Leung, D. F. Kimball and P. M. Asbeck “A wideband CMOS/GaAs HBT envelope tracking power amplifier for 4G LTE mobile terminal applications,” IEEE Trans. Microw. Theory Tech, vol. 60, no. 5, pp. 1321–1330, May 2012. [9] D. F. Kimball, J. Jeong, C. Hsia, P. Draxler, S Lanfranco, W. Nagy, K. Linthicum, L. E. Larson, and P. M. Asbeck, “High-efficiency envelope tracking W-CDMA base-station amplifier using GaN HFETs,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 11, pp. 3848–3856, Nov. 2006. [10] J. Jeong, D. F. Kimball, M. Kwak, C. Hsia, P. Draxler, and P. M. Asbeck, “Wideband envelope tracking power amplifier with reduced bandwidth power supply waveforms and adaptive digital predistortion techniques,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 12, pp. 3307–3314, Dec. 2009. [11] Mccune, Earl, “Polar transmitter principles,” in Dynamic Power Supply Transmitters: Envelope Tracking, Direct Polar, and Hybrid Combinations. Cambridge University Press, pp. 181, May. 2015. [12] Y. Wang, “An improved Kahn transmitter architecture based on delta–sigma modulation,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2003, vol. 3, pp. 1327–1330. [13] M. Taromaru, N. Ando, T. Kodera, and K. Yano, “An EER transmitter architecture with burst-width envelope modulation based on trianglewave comparison PWM,” in Proc. IEEE Int. Symp. PIMRC, Sep. 2007, pp. 1–5. [14] C. Berland, I. Hibon, J. F. Bercher, M. Villegas, D. Belot, D. Pache, and V. Le Goascoz, “A transmitter architecture for nonconstant envelope modulation,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 1, pp. 13–17, Jan. 2006. [15] M. Nielsen and T. Larsen, “A transmitter architecture based on delta–sigma modulation and switch-mode power amplification,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 8, pp. 735–739, Aug. 2007. [16] J.-H. Chen, H.-S. Yang, and Y.-J.E. Chen, “A multi-level pulse modulated polar transmitter,” IEEE Microw.Wireless Compon. Lett., vol. 20, no. 5, pp. 295–297, May. 2010. [17] J.-H. Chen, H.-S. Yang, H.-C. Lin, and Y.-J. E. Chen, “A polar-transmitter architecture using multiphase pulsewidth modulation,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 2, pp. 244–252, Feb. 2011. [18] Y.-S. Jeon, H.-S. Yang, and S. Nam, “A power re-use technique for improving power amplifier efficiency under load mismatch,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 6, pp. 1148–1154, Jun. 2001. [19] H.-S. Yang, C.-W. Chang, and J.-H. Chen, “A highly efficient LTE pulse-modulated polar transmitter using wideband power recycling,” IEEE Trans. Microw. Theory Tech., vol. 63, no.12, pp. 4437–4443, Dec. 2015. [20] 3rd Generation Partnership Project Tech. Specification Group, “User Equipment (UE) Radio Transmission and Reception (FDD),” Valbonne, France, Rep. 3GPP TS 36.101, 2014. [21] “CDMA/GSM850 Tx SAW filter,” Taiyo Yuden Products, CITY, STATE/COUNTRY, FAR-F5KA-836M50-D4DF Data Sheet, Mar. 31, 2010. [Online]. Available: http://www.yuden.co.jp/us/prodcut/pdf/d4df_ver,2.1b.pdf . [22] B. Francois et al., “Analysis of burst-mode RF PA with direct filter connection,” in Proc. IEEE The 40th European Microwave conf. Set. 2010, pp.974–977, 2012, pp. 1–3. [23] M. A. Morgan, T. A. Boyd “Theoretical and Experimental Study of a New Class of Reflectionless Filter,” IEEE Trans. Microw. Theory Tech., vol. 59, no.5, pp. 1214–1221, May. 2011. [24] D. M. Pozar, Microwave Engineering, 2nd ed. New York, NY, USA: Wiley, 1998. [25] M. A. Morgan, T. A. Boyd “ Reflectionless Filter Structures,” IEEE Trans. Microw. Theory Tech., vol. 63, no.4, pp. 1263–1271, Apr. 2015. [26] C.-W. Tang, C.- T. Tseng, and K.- C. Hsu, “Design of the Modified Planar Tandem Couplers With a Wide Passband,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 1, pp. 48-54, Jan. 2013.. [27] Mini-Circuits Inc., “Core & Wire 90 degree Hybrid “Available: https://www.minicircuits.com/pdfs/RPQ-820.pdf. [28] E. G. Cristal, L. Young, “Theory and Tables of Optimum Symmetrical TEM-Mode Coupled-Transmission-Line Directional Couplers,” IEEE Trans. Microw. Theory Tech., vol. 13, no. 5, pp. 544-558, Sep. 1965. [29] K. Hausmair et al. , “Aliasing-free digital pulse-width modulation for burst-mode RF transmitters,” IEEE Trans. Circuits Syst. I: Reg. papers, vol. 60, no. 2, pp. 415-427, Feb. 2013. [30] J.-L. Woo, S. Park, U. Kim, and Y. Kwon, “Dynamic stack-controlled CMOS RF power amplifier for wideband envelope tracking,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 12, pp. 3452–3464, Dec. 2014. [30] J.-L. Woo, S. Park, U. Kim, and Y. Kwon, “Dynamic stack-controlled CMOS RF power amplifier for wideband envelope tracking,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 12, pp. 3452–3464, Dec. 2014. [31] D. Kang et al., “Impact of nonlinear on HBT Doherty power amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 9, pp. 3298–3307, Sep. 2013. [32] R. Wu et al., “High-efficiency silicon-based envelope-tracking power amplifier design with envelope shaping for broadband wireless applications,” IEEE J. Solid-State Circuits, vol. 48, no. 9, pp. 2030–2040, Sep. 2013.
|