|
[1]R. Girshick, J. Donahue, T. Darrell, J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014. [2]R. Girshick. Fast R-CNN. In ICCV, 2015, pp. 1440-1448 [3]S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards RealTime Object Detection with Region Proposal Networks. In NIPS, 2015. [4]W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg. SSD: Single Shot MultiBox Detector. In ECCV, 2016. [5]J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You Only Look Once: Unified, Real-Time Object Detection. In CVPR, 2016. [6]J. Redmon and A. Farhadi. YOLO9000: Better, Faster, Stronger. CVPR, 2017. [7]Cortes, C.; Vapnik, V. Support-vector networks. Machine Learning. 1995, 20 (3): 273–297. [8]K. He, G. Gkioxari, P. Dollár, R. Girshick. Mask R-CNN. In ICCV, 2017. [9]K. He, X. Zhang, S. Ren, J. Sun. Deep Residual Learning for Image Recognition. In CVPR, 2015. [10]T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie. Feature Pyramid Networks for Object Detection. In CVPR, 2017. [11]M. Fischler, R. Bolles. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. In Communications of the ACMJune, 1981. [12]S. Tulsiani and J. Malik. Viewpoints and Keypoints. In CVPR, 2015. [13]Alex Kendall, Matthew Grimes, Roberto Cipolla. PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization. In ICCV, 2015. [14]C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich. Going deeper with convolutions. In CVPR 2015. [15]Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes. arXiv preprint arXiv:1711.00199, 2017. 2. [16]K. Simonyan, A. Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv:1409.1556, 2015. 4. [17]P. Poirson, P. Ammirato, C.-Y. Fu, W. Liu, J. Kosecka, and A. C. Berg. Fast Single Shot Detection and Pose Estimation. In 3DV, 2016. [18]C. Szegedy, S. Ioffe, V. Vanhoucke, A. Alemi. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. In AAAI, 2017. [19]B. Tekin, S. Sinha, P. Fua. Real-Time Seamless Single Shot 6D Object Pose Prediction. In CVPR, 2018. [20]X. Glorot, A. Bordes, Y. Bengio. Deep Sparse Rectifier Neural Networks. In AISTATS, 2011. [21]B. X, N. Wang, T. Chen, M. Li. Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853, 2015. [22]A. Maas, A. Hannum, A. Ng. Rectified Nonlinearities Improve Neural Network Acoustic Models. In ICML, 2013. [23]T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, and C. L. Zitnick. Microsoft COCO: Common objects in context. In ECCV. 2014. [24]S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige, and N. Navab. Model Based Training, Detection and Pose Estimation of Texture-less 3D Objects in Heavily Cluttered Scenes. In ACCV, 2012. [25]A. Krizhevsky, I. Sutskever, G. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. In LSVRC, 2010. [26]F. Michel, A. Kirillov, E. Brachmann, A. Krull, S. Gumhold, B. Savchynskyy, and C. Rother. Global Hypothesis Generation for 6D Object Pose Estimation. In CVPR, 2017 [27]M. Rad and V. Lepetit. BB8: A Scalable, Accurate, Robust to Partial Occlusion Method for Predicting the 3D Poses of Challenging Objects without Using Depth. In ICCV, 2017. [28]P. Besl, N. McKay. A Method for Registration of 3-D Shapes. In PAMI, 1992. [29]P. Poirson, P. Ammirato, C.-Y. Fu, W. Liu, J. Kosecka, and A. C. Berg. Fast Single Shot Detection and Pose Estimation. In 3DV, 2016. [30]G. Huang, Z.Liu, L.Maaten and K. Weinberger. Densely Connected Convolutional Networks. In CVPR, 2017.
|