(34.201.11.222) 您好!臺灣時間:2021/02/25 04:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王文杰
研究生(外文):WANG, WEN-CHIEH
論文名稱:應用半橋LLC諧振轉換器於USB 供電
論文名稱(外文):Applying Half-Bridge LLC Resonant Converter to USB Power Delivery
指導教授:胡國英
指導教授(外文):HWU, KUO-ING
口試委員:胡國英姚宇桐江文莊謝振中
口試委員(外文):HWU, KUO-INGYAU, YEU-TORNGJIANG, WEN-ZHUANGSHIEH, JENN-JONG
口試日期:2020-07-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:257
中文關鍵詞:LLC諧振轉換器諧振式分壓器USB 供電FPGA
外文關鍵詞:LLC Resonant ConverterResonant Voltage DividerUSB Power DeliveryField Programmable Gate Array
相關次數:
  • 被引用被引用:0
  • 點閱點閱:31
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文係提出一具寬範圍輸出之半橋LLC 串聯諧振轉換器,並將其應用於USB供電。就所提出之電路而言,半橋LLC 諧振轉換器用於提供USB 電氣隔離及穩定的電壓和電流輸出。同時,主動開關具有零電壓切換,可以降低整體功率損失;除此之外,於初級側電路中加入諧振式分壓器,可達成降壓之目的,已使得此電路具有四個額定輸出的靜態工作點。於本論文中,首先,將針對所採用之LLC 串聯諧振轉換器及諧振式分壓器之動作原理進行分析與說明,並藉由PSIM 模擬軟體來驗證其可行性。最後,再藉由數位訊號處理器FPGA 來做為電路控制核心,並以實驗結果來驗證其有效性,此實驗測試平台之規格為,400+10V,400-10V 輸入電壓、四個額定輸出的靜態工作點5V/6A,12V/3A,15V/5A 及20V/5A。
In the thesis, a half-bridge LLC series resonant converter with a wide output range is applied to the USB power delivery. This converter can offer galvanic isolation and stable voltage and current output. At the same time, the main switches have zero voltage switching so that the overall power loss can be reduced. In addition, the input voltage of this LLC converter, due to a resonant voltage divider, will be reduced by half if needed, so that the four rated operating points can be achieved. In this thesis, the operating principle of such a converter will be analyzed and explained firstly. Sequentially, the feasibility of this converter can be obtained by the PSIM software, and its effectiveness can be verified by some experimental results, which are obtained by using the field programmable gate array (FPGA) as a circuit control kernel. The specifications of the prototype are the input voltage of and four rated output quiescent points of 5V/6A, 12V/3A, 15V/5A and 20V/5A.
目錄
摘要 i
ABSTRACT ii
誌謝 iv
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 研究動機及目的 1
1.2 研究方法 15
1.3 論文內容架構 16
第二章 諧振式轉換器原理及USB Power Delivery簡介 17
2.1諧振式轉換器之分類 17
2.1.1 準諧振式轉換器 17
2.1.2 串聯諧振式轉換器 20
2.1.3 並聯諧振式轉換器 22
2.1.4 串並聯諧振式轉換器 25
2.1.5 LLC串聯諧振式轉換器 27
2.2 USB Power Delivery 29
第三章 具LLC諧振轉換器應用於USB電力傳輸 31
3.1前言 31
3.2電路符號定義及假設 31
3.3所提電路之工作原理與數學分析 33
3.3.1 LLC於步驟一時之運作行為 34
3.3.2 LLC於步驟二時之運作行為 67
3.3.3諧振式分壓器之運作行為 91
3.4所提架構之特性分析 92
3.4.1諧振式分壓器之直流電壓增益 92
3.4.2 LLC之電壓增益 93
3.4.3 LLC電壓增益與K值關係 96
3.4.4 電壓增益與品質因素Q關係 98
第四章 系統之硬體電路設計 100
4.1 前言 100
4.2系統架構 100
4.3 架構之系統規格 101
4.4 系統設計 101
4.4.1參數設計 102
4.4.2功率開關及二極體的選配 109
4.4.3 諧振槽元件選配 112
第五章 軟體規劃及程式設計流程 123
5.1 前言 123
5.2 VHDL程式簡介 123
5.2.1 Library宣告區 124
5.2.2 Use宣告區 124
5.2.3 Entity宣告區 124
5.2.4 Architecture宣告區 125
5.2.5 物件模式與型別 125
5.3 程式動作流程 126
5.3.1 變頻控制模組 127
5.3.2 PI運算模組 128
5.3.3 VCO模組 130
5.3.4 DPWM模組 131
第六章 模擬與實作結果 133
6.1 前言 133
6.2 電路模擬結果 133
6.2.1 於20V輸出電壓下之波形圖 134
6.2.2於15V輸出負載下之波形圖 136
6.2.3於12V輸出電壓額定輸出負載下之波形圖 140
6.2.4於5V輸出電壓下之波形圖 144
6.3電路實驗波形圖 148
6.3.1於額定輸入電壓及20V輸出電壓下之波形圖 148
6.3.2於額定輸入電壓及15V輸出電壓下之波形圖 152
6.3.3於額定輸入電壓及12V輸出電壓下之波形圖 157
6.3.4於額定輸入電壓及5V輸出電壓下之波形圖 164
6.3.5於最小輸入電壓且20V輸出電壓下之量測波形圖 172
6.3.6於最小輸入電壓及15V輸出電壓下之波形圖 176
6.3.7於最小輸入電壓及12V輸出電壓下之波形圖 180
6.3.8於最小輸入電壓及5V輸出電壓下之波形圖 186
6.3.9於最大輸入電壓及20V輸出電壓下之波形圖 193
6.3.10於最大輸入電壓及15V輸出電壓下之波形圖 197
6.3.11於最大輸入電壓及12V輸出電壓下之波形圖 201
6.3.12於最大輸入電壓及5V輸出電壓下之波形圖 207
6.4於不同輸入電壓及4個靜態電壓下比較 214
6.4.1於不同輸入電壓及輸出電壓20V 214
6.4.2於不同輸入電壓及輸出電壓15V 214
6.4.3於不同輸入電壓及輸出電壓12V 214
6.4.4於不同輸入電壓及輸出電壓5V 215
6.5 效率對負載之關係圖 215
6.6 功率損耗計算 218
6.6.1輸出電壓20V 219
6.6.2輸出電壓15V 223
6.6.3輸出電壓12V 227
6.6.4輸出電壓5V 232
第七章 結論與未來展望 239
7.1 結論 239
7.2 未來展望 239
參考文獻 240
符號彙編 251


[1]Marcus Conrad and Rik W. DeDoncker, “Avoiding reverse recovery effects in super junction MOSFET based half-bridges,” IEEE PEDG’15, pp. 1-5, 2015.
[2]W. M. Blewitt and D. I. Gurwicz, “Reduction of power MOSFET losses in hard-switched converters,” IEEE Electronics Letters, vol. 44, no. 18, pp. 1088-1089, 2008.
[3]Shehab Ahmed, “Hard switched MOSFET inverter for elevated temperature applications,” IEEE PESC’08, pp. 3184-3190, 2008.
[4]Petros Alexakis, Olayiwola Alatise, Li Ran and Phillip Mawby, “Modeling power converters using hard switched silicon carbide MOSFETs and Schottky barrier diodes,” IEEE EPE’13, pp. 1-9, 2013.
[5]Guichao Hua and Fred C. Lee, “Soft-switching techniques in PWM converters,” IEEE Transactions on Industrial Electronics, vol. 42, no. 6, pp. 595-603, 1995.
[6]Y. Khersonsky, M. Zahzah, C. Mak, G. Robinson, P. Huynh and J. Sink, “Evolution of soft-switched, high-frequency, high-power isolated DC-DC converter,” IEEE IAS’01, vol. 3, pp. 1851-1857, 2001.
[7]Aditya Jayam Prabhakar, Joshua David Bollinger, Hong Tao Ma, Mehdi Ferdowsi and Keith Corzine, “Efficiency analysis and comparative study of hard and soft switching DC-DC converters in a wind farm,” IEEE IECON’08, pp. 2156-2160, 2008.
[8]Y. Tang, H. Zhu, B. Song, J. S. Lai and C. Chen, “EMI experimental comparison of PWM inverters between hard- and soft-switching techniques,” IEEE Power Electronics in Transportation, pp. 71-77, 1998.
[9]R. Vijayalakshmi, M. Trivedi and K. Shenai, “Power bipolar transistor performance in hard- and soft-switching power converters,” IEEE IAS’98, vol. 2, pp. 888-892, 1998.
[10]Jaroslav Dudrik, Pavol Spanik and Nistor-Daniel Trip, “Zero-voltage and zero-current switching full-bridge DC-DC converter with auxiliary transformer,” IEEE Transactions on Power Electronics, vol. 21, no. 5, pp. 1328-1335, 2006.
[11]Jung G. Cho, Juan A. Sabate and Fred C. Lee, “Novel full bridge zero-voltage-transition PWM DC/DC converter for high power applications,” IEEE APEC’94, vol. 1, pp. 143-149, 1994.
[12]Kwang-Hwu Liu and Fred C. Lee, “Zero-voltage switching technique in DC/DC converters,” IEEE Transactions on Power Electronics, vol. 5, no. 3, pp. 293-304, 1990.
[13]Jiangtao Feng, Yuequan Hu, Wei Chen and W. Chau-Chun, “ZVS analysis of asymmetrical half-bridge converter”, IEEE PESC’01, vol. 1, pp. 243-247, 2001.
[14]Carlos A. Canesin and Ivo Barbi, “Novel zero-current-switching PWM converters,” IEEE Transactions on Industrial Electronics, vol. 44, no. 3, pp. 372-381, 1997.
[15]F. T. Wakabayashi and C. A. Canesin, “A new family of zero-current-switching PWM converters and a novel HPF-ZCS boost rectifier,” IEEE APEC’99, vol. 1, pp. 605-611, 1999.
[16]Vencislav Valchev, Dimitre Yudov, Jeliazko Batchvarov, Alex Van den Bossche and Jan Melkebeek, “Zero-voltage and zero-current-switching half bridge DC/DC converter,” IEEE IAC’02, vol. 4, pp. 2327-2334, 2002.
[17]D. Maksimovic and S. Cuk, “Constant-frequency control of quasi-resonant converters,” IEEE Transactions on Power Electronics, vol. 6, no. 1, pp. 141-151, 1991.
[18]F. C. Lee, “High-frequency quasi-resonant converter technologies,” Proceedings of the IEEE, vol. 76, no. 4, pp. 377-390, 1988.
[19]Kwang-Hwa Liu, Ramesh Oruganti and Fred C. Lee, “Quasi-resonant converters-topologies and characteristics,” IEEE Transactions on Power Electronics, vol. 2, no. 1, pp. 62-71, 1987.
[20]R. L. Steigerwald, “A comparison of half-bridge resonant converter topologies,” IEEE APEC’87, pp. 135-144, 1987.
[21]V. Vorperian and Slobodan Cuk, “A complete DC analysis of the series resonant converter,” IEEE PESC’82, pp. 85-100, 1982.
[22]R. King and T. A. Stuart, “A normalized model for the half-bridge series resonant converter,” IEEE Transactions on Aerospace and Electronic Systems, vol. 17, no. 2, pp. 190-198, 1981.
[23]A. K. S. Bhat, “Analysis and design of LCL-type series resonant converter,” IEEE INTELEC’90, pp. 172-178, 1990.
[24]V. Vorperian, “Approximate small-signal analysis of the series and the parallel resonant converters,” IEEE Transactions on Power Electronics, vol. 4, no. 1, pp. 15-24, 1989.
[25]Ramesh Oruganti, James J. Yang and Fred C. Lee, “Implementation of optimal trajectory control of series resonant converter,” IEEE PESC’97, pp. 451-459, 1987.
[26]C. T. Rim and G. H. Cho, “Phasor transformation and its application to the DC-AC analyses of frequency phase-controlled series resonant converters (SRC),” IEEE Transactions on Power Electronics, vol. 5, no. 2, pp. 201-211, 1990.
[27]Hariharan Krishnaswami and Ned Mohan, “Three-port series-resonant DC-DC converter to interface renewable energy sources with bidirectional load and energy storage ports,” IEEE Transactions on Power Electronics, vol. 24, no. 10, pp. 2289-2297, 2009.
[28]Mohamed Khalil-Abaker, Juan Shi and Akhtar Kalam, “Design of a 100W bi-directional LCC series-parallel resonant DC-DC converter,” IEEE AUPEC’16, pp. 1-5, 2016.
[29]Bekir Fincan, Taha Nurettin Gucin and Muhammet Biberoglu, “State-plane analysis of parallel resonant converter,” IEEE PESC’16, pp. 1-11, 2016.
[30]Steven D. Johnson and Robert W. Erickson, “Steady-state analysis and design of the parallel resonant converter,” IEEE PESC’86, pp. 154-165, 1986.
[31]G. Ivensky, A. Kats and S. Ben-Yaakov, “An RC load model of parallel and series-parallel resonant DC-DC converters with capacitive output filter,” IEEE Transactions on Power Electronics, vol. 14, no. 3, pp. 515-521, 1999.
[32]A. K. S. Bhat, “Analysis and design of a series-parallel resonant converter with capacitive output filter,” IEEE Transactions on Industry Applications, vol. 27, no. 3, pp. 523-530, 1991.
[33]A. K. S. Bhat, “Analysis and design of a series-parallel resonant converter,” IEEE Transactions on Power Electronics, vol. 8, no. 1, pp. 1-3, 1993.
[34]M. K. Kazimierczuk, N. Thirunarayan and S. Wang, “Analysis of series-parallel resonant converter,” IEEE Transactions on Aerospace and Electronic Systems, vol. 29, no. 1, pp. 88-99, 1993.
[35]A. J. Forsyth, G. A. Ward and S. V. Mollov, “Extended fundamental frequency analysis of the LCC resonant converter,” IEEE Transactions on Power Electronics, vol. 18, no. 6, pp. 1286-1292, 2003.
[36]D. Czarkowski and M. K. Kazimierczuk, “Phase-controlled series-parallel resonant converter,” IEEE Transactions on Power Electronics, vol. 8, no. 3, pp. 309-319, 1993.
[37]Dianbo Fu, Ya Liu, Fred C. Lee and Ming Xu, “A novel driving scheme for synchronous rectifiers in LLC resonant converters,” IEEE Transactions on Power Electronics, vol. 24, no. 5, pp. 1321-1329, 2009.
[38]Xiaogao Xie, Zhuo Zhao, Chen Zhao, J. M Zhang and Zhaoming Qian, “Analysis and optimization of LLC resonant converter with a novel over-current protection circuit,” IEEE INTELEC’05, pp. 487-490, 2005.
[39]Bo Yang, F. C. Lee, A. J. Zhang and Guisong Huang, “LLC resonant converter for front end DC-DC conversion,” IEEE APEC’02, vol. 2, pp.1108-1112, 2002.
[40]Bing Lu, Wenduo Liu, Yan Liang , F. C. Lee and J. D. van Wyk, “Optimal design methodology for LLC resonant converter,” IEEE APEC’06, pp. 1-6, 2006.
[41]J. F. Lazar and R. Martinelli, “Steady-state analysis of the LLC series resonant converter,” IEEE APEC’01, vol. 2, pp. 728-735, 2001.
[42]Yilei Gu, Zhengyu Lu, Lijun Hang, Zhaoming Qian and Guisong Huang, “Three-level LLC series resonant DC-DC converter,” IEEE Transactions on Power Electronics, vol. 20, no. 4, pp. 781-789, 2005.
[43]Global market forecasts examines external AC-DC power supplies”, EE Times, 2017. [Online]. Available: http://www.eetimes.com/document.asp?doc_id=1263930. [Accessed:13-Ju-2017]
[44]External Power Adapters and Chargers Report 2014”, HIS Technology, [Online]. Available: https://technology.ihs.com/api/binary/511835?attachment=true. [Accessed: 13- Jul- 2017].
[45]External power adapters and chargers 2015.” IHS Technology, [Online]. Available:https://technology.ihs.com/525703/external-poweradapters-chargers-2015. [Accessed: 13- Jul- 2017].
[46]Xiucheng Huang, Junjie Feng, Weijing Du, Fred C. Lee and Qiang Li, “Design consideration of MHz active clamp flyback converter with GaN devices for low power adapter application,” IEEE APEC’09, pp. 2334-2341, 2009.
[47]Lingxiao Xue and Jason Zhang, “Highly efficient secondary-resonant active clamp flyback converter,” IEEE Transactions on Industrial Electronics, vol. 65, no. 2, pp. 1235-1243, 2018.
[48]Dake He and R.M. Nelms, “Fuzzy logic peak current-mode control for dc-dc converters using an inexpensive 8-bit micro controller,” IEEE APEC’05, vol. 3, pp. 2000-2006, 2005.
[49]S.A. Chickamenahalli, Jun Liu and M. Suryakumar, “A DSP controlled variable-frequency resonant-commutated converter,” IEEE Transactions on Power Electronics, vol. 15, no. 7, pp. 447-455, 2000.
[50]Fernando Sobrino-Manzanares and Ausias Garrigos, “Bidirectional, interleaved, multiphase, multidevice, soft-switching, FPGA-controlled, buck-boost converter with PWM real-time reconfiguration,” IEEE Transactions on Power Electronics, vol. 33, no. 11, pp. 9710-9721, 2018.
[51]Mitja Truntic and Miro Milanovic, “Voltage and current-mode control for a buck-converter based on measured integral values of voltage and current implemented in FPGA,” IEEE Transactions on Power Electronics, vol. 29, no. 12, pp. 6686-6699, 2014.
[52]Djilali Hamza, Majid Pahlevaninezhad and Praveen K. Jain, “Implementation of a novel digital active EMI technique in a DSP-based DC-DC digital controller used in electric vehicle (EV),” IEEE Transactions on Power Electronics, vol. 28, no. 7, pp. 3126-3137, 2013.
[53]Simone Buso and Tommaso Caldognetto, “A nonlinear wide-bandwidth digital current controller for DC-DC and DC-AC converters,” IEEE Transactions on Industrial Electronics, vol. 62, no. 12, pp. 7687-7695, 2015.
[54]UCD3138_datasheet. TI, 2016. [Online]. Available: http://www.ti.com/lit/ug/sniu028a/sniu028a.pdf.
[55]Dake He and R. M. Nelms, “Peak current-mode control for a boost converter using an 8-bit microcontroller,” IEEE PESC’03, vol. 2, pp. 938-943, 2003.
[56]Mohammad Faridun Naim Tajuddin and Nasrudin Abdul Rahim, “Small-signal ac modeling technique of buck converter with DSP based proportional-integral-derivative (PID) controller,” IEEE ISIEA’09, vol. 2, pp. 904-909, 2009.
[57]Xing Zhou, Li Wei Zhang and Yan Li, “Design and implementation of a digital controller for multi-input converter used in new energy combined power supply system,” IEEE ICECE’11, pp. 1511-1515, 2011.
[58]Ghulam Abbas, Umar Farooq and Muhammad Usman Asad, “Design and FPGA implementation of 1-degree-of-freedom discrete PID controller for power switching converter,” IEEE ICIEA’12, pp. 1070-1074, 2012.
[59]Chun-Nan Liu, Chun-Hung Yang and Chien-Hung Tsai, “Digital compensator design for power-aware dc-dc converters,” IEEE ISAC’10, pp. 177-180, 2010.
[60]G. Tapia and N. Garcia, “Digital current control of a thyristor-based converter using a DSC,” IEEE PESGM’12, pp. 1-6, 2012.
[61]賈證主,VHDL數位系統設計與應用,台北,台科大圖書股份有限公司,2004。
[62]Ibrahim Demirel and Burcu Erkmen, “A very low-profile dual output LLC resonant converter for LCD/LED TV applications,” IEEE Transactions on Power Electronics, vol. 29, no. 7, pp. 3514-3524, 2014.
[63]Mohammad Ali Saket, Navid Shafiei, Martin Ordonez, Marian Craciun and Chris Botting, “Low parasitics planar transformer for LLC resonant battery chargers,” IEEE APEC’16, pp. 854-858, 2016.
[64]Gang Yang, Patrick Dubus and Daniel Sadarnac, “Double-phase high-efficiency, wide load range high-voltage/low-voltage LLC DC/DC converter for electric/hybrid vehicles,” IEEE Transactions on Power Electronics, vol. 30, no. 4, pp. 1876-1886, 2015.
[65]Xiaofeng Sun, Yanfeng Shen, Yune Zhu and Xiaoqiang Guo, “Interleaved boost-integrated LLC resonant converter with fixed-Frequency PWM control for renewable energy generation applications,” IEEE Transactions on Power Electronics, vol. 30, no. 8, pp. 4312-4326, 2015.
[66]Chien-Hsuan Chang, Chun-An Cheng and Hung-Liang Cheng, “Modeling and design of the LLC resonant converter used as a solar-array simulator,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 2, no. 4, pp. 833-841, 2014.
[67]Hongliang Wang, Yang Chen, Yan-Fei Liu, Jahangir Afsharian and Zhihua Alex Yang, “A family of capacitive current balancing methods for multi-output LED drivers,” IEEE ECCE’15, pp. 5447-5453, 2015.
[68]Hongliang Wang, Yang Chen, Yajie Qiu, Peng Fang, Yan Zhang, Laili Wang and Yan-Fei Liu, “Common capacitor multiphase LLC converter with passive current sharing ability,” IEEE Transactions on Power Electronics, vol. 33, no. 1, pp. 370-387, 2018.
[69]Hongliang Wang, Yang Chen, Yan-Fei Liu and Sucheng Liu, “Symmetric current-balancing circuit for LED backlight with dimming,” IEEE IPEMC’16, pp. 1-8, 2016.
[70]Hongliang Wang, Yang Chen, Zhiyuan Hu, Laili Wang, Yajie Qiu, Wenbo Liu, Yan-Fei Liu, Jahangir Afsharian and Zhihua Yang, “A common capacitor multi-phase LLC resonant converter,” IEEE APEC’16, pp. 2320-2327, 2016.
[71]Hongliang Wang, Yang Chen, Yan-Fei Liu, Jahangir Afsharian and Zhihua Alex Yang, “A common inductor multi-Phase LLC resonant converter,” IEEE ECCE’15, pp. 548-555, 2015.
[72]Hongliang Wang, Yang Chen, Yan-Fei Liu, Jahangir Afsharian and Zhihua Yang, “A passive current sharing method with common inductor multiphase LLC resonant converter,” IEEE Transactions on Industrial Electronics, vol. 32, no. 9, pp. 6994-7010, 2017.
[73]Sheng Wu, Ming Chen, Huan Xu, Lian-Yuan Liu and Guo-Rong Zhu, “A novel current sharing method for multi-phase LLC converter,” IEEE ICIICII’16, pp. 274-277, 2016.
[74]Junjun Zhang, Wei Jiang, Tianyang Jiang, Shuai Shao, Yaojie Sun, Bo Hu and Junming Zhang, “A three-port LLC resonant DC/DC converter,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 7, no. 4, pp. 2513-2524, 2019.
[75]Haoyu Wang, “A pulse width modulated LLC type resonant topology adpated to wide output voltage range,” IEEE APEC’16, pp. 1280-1285, 2016.
[76]Haoyu Wang and Zhiqing Li, “A PWM LLC type resonant converter adapted to wide output range in PEV charging applications,” IEEE Transactions on Power Electronics, vol. 33, no. 5, pp. 3791-3801, 2018.
[77]Ming Shang and Haoyu Wang, “A voltage quadrupler rectifier based pulsewidth modulated LLC converter with wide output range,” IEEE Transactions on Industry Applications, vol. 54, no. 6, pp. 6159-6168, 2018.
[78]Xiaofeng Sun, Xiaohua Li, Yanfeng Shen, Baocheng Wang and Xiaoqiang Guo, “Dual-bridge LLC resonant converter with fixed-frequency PWM control for wideinput applications,” IEEE Transactions on Power Electronics, vol. 32, no. 1, pp. 69-80, 2017.
[79]Huipin Lin, Xiaoguang Jin, Wenxi Yao , Zhengyu Lyu, Yan Deng and Xinnian Sun, “A vary mode control-based high-efficiency full-bridge LLC resonant converter operating in super wide input voltage range,” IEEE SPEC’15, pp. 1-5, 2016.
[80]Milan M. Jovanovic and Brian T. Irving, “Efficiency optimization of LLC resonant converters operating in wide input- and/or output-voltage range by on-the-fly topology-morphing control” IEEE APEC’15, pp. 1420-1427, 2015.
[81]Milan M. Jovanovic and Brian T. Irving, “On-the-fly topology-morphing control efficiency optimization method for LLC resonant converters operating in wide input- and/or output-voltage range,” IEEE Transactions on Power Electronics, vol. 31, no. 3, pp. 2596-2608, 2016.
[82]Feng Jin, Fuxin Liu, Xinbo Ruan and Xiaoli Meng, “Multi-phase multi-level LLC resonant converter with low voltage stress on the primary-side switches,” IEEE ECCE’14, pp. 4704-7410, 2014.
[83]Zhiqing Li, Bo Xue and Haoyu Wang, “An interleaved secondary-side modulated LLC resonant converter for wide output ange applications,” IEEE Transactions on Industrial Electronics, vol. 67, no. 2, pp. 1124-1135, 2020.
[84]Jong-Woo Kim and Gun-Woo Moon, “A sew LLC series resonant converter with a narrow switching frequency variation and reduced conduction losses,” IEEE Transactions on Power Electronics, vol. 29, no. 8, pp. 4278-4287, 2014.
[85]Han-Dong Gui, Zhiliang Zhang, Xiao-Fei He and Yan-Fei Liu, “A high voltage-gain LLC micro-converter with high efficiency in wide input range for PV applications,” IEEE APEC’14, pp. 637-642, 2014.
[86]Haibing Hu, Xiang Fang, Frank Chen, Z. John Shen and Issa Batarseh, “A modified high-efficiency LLC converter with two transformers for wide input-voltage range applications,” IEEE Transactions on Power Electronics, vol. 28, no. 4, pp.1946-1960, 2013.
[87]Haibing Hu, Xiang Fang, Qian Zhang, Z. John Shen and Issa Batarseh, “Optimal design considerations for a modified LLC converter with wide input voltage range capability suitable for PV applications,” IEEE ECCE’11, pp. 3096-3103, 2011.
[88]Xinxi Tang, Yan Xing, Hongfei Wu and Jian Zhao, “An improved LLC resonant converter with reconfigurable hybrid voltage multiplier and PWM-plus-PFM hybrid control for wide output range applications,” IEEE Transactions on Power Electronics, vol. 35, no. 1, pp.185-197, 2020.
[89]Wenjin Sun, Yan Xing, Hongfei Wu and Jie Ding “Modified high-efficiency LLC converters with two split resonant branches for wide input-voltage range applications,” IEEE Transactions on Power Electronics, vol. 33, no. 9, pp. 7867-7879, 2018.
[90]Xiaofeng Sun, Yanfeng Shen, Yune Zhu and Xiaoqiang Guo “Interleaved boost integrated LLC resonant converter with fixed-frequency PWM control for renewable energy generation applications,” IEEE Transactions on Power Electronics, vol. 30, no. 8, pp. 4312-4326, 2015.
[91]Ting Qian and Chenghui Qian, “A combined topology with coupled LLC resonance for wide-range operation,” IEEE Transactions on Power Electronics, vol. 34, no. 7, pp. 520-531, 2019.
[92]M. Imran Shahzad, Shahid Iqbal and Soib Taib, “A wide output range HB-2LLC resonant converter with hybrid rectifier for PEV battery charging,” IEEE Transactions on Transportation Electrification, vol. 3, no. 2, pp. 520-531, 2017.
[93]Guangdi Li, Jin Xia, Kun Wang, Yan Deng, Xiangning He and Yousheng Wang, “Hybrid modulation of parallel-series LLC resonant converter and phase shift full-bridge converter for a dual-output DC-DC converter,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 7, no. 2, pp. 833-842, 2019.
[94]Hongfei Wu, Xiaohai Zhan and Yan Xing, “Interleaved LLC resonant converter with hybrid rectifier and variable-frequency plus phase-shift control for wide output voltage range applications,” IEEE Transactions on Power Electronics, vol. 32, no. 6, pp. 520-531, 2017.
[95]K. I. Hwu and Y. T. Yau, “A simple resonant voltage divider,” IEEE APEC’09 pp. 1115-1120, 2009.
[96]A primer on USB Type-C and PD applications and requirements.” TI, 2016. [Online]. Available: https://www.ti.com/lit/slyy109. [Accessed:13- Jul- 2017].

電子全文 電子全文(網際網路公開日期:20250822)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔