|
[1]D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, and Y. Chen, 2011. Flexible and Transparent Electrothermal Film Heaters Based on Graphene Materials. Small 7, 3186-3192. [2]F. J. Romero, A. Rivadeneyra, I. Ortiz-Gomez, A. Salinas, A. Godoy, D. P. Morales, N. Rodriguez, 2019. Inexpensive Graphene Oxide Heaters Lithographed by Laser. Nanomaterials 9 (9), 1184. [3]M. Tian, Y. Hao, L. Qu, S. Zhu, X. Zhang, S. Chen, 2019. Enhanced electrothermal efficiency of flexible graphene fabric Joule heaters with the aid of graphene oxide. Materials Letters 234, 101–104. [4]Y. Song, Y. Luo, C. Zhu, H. Li, D. Du, Y. Lin, 2016. Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials. Biosensors and Bioelectronics, 76 (15), 195-212. [5]S. Afsahia, M. B. Lerner, J. M. Goldstein, J. Lee, X. Tang, D. A. Bagarozzi Jr., D. Pan, L. Locascio, A. Walker, F. Barron, B. R. Goldsmith, 2018. Biosensors and Bioelectronics, 100 (15), 85-88. [6]Y. Zhou, M. Ma, H. He, Z. Cai, N. Gao, C. He, G. Chang, X. Wang, Y. He, 2019. Highly sensitive nitrite sensor based on AuNPs/RGO nanocomposites modified graphene electrochemical transistors. Biosensors and Bioelectronics, 146 (15), 111751. [7]T. L. Chang, C. Y. Chou, C. P. Wang, T. C. Teng, Hsieh-Cheng Han, 2019. Picosecond laser-direct fabrication of graphene-based electrodes for a gas sensor module with wireless circuits. Microelectronic Engineering, 210, 19–26. [8]Q. Ke, J. Wang, 2016. Graphene-based materials for supercapacitor electrodes – A review, Journal of Materiomics, 2 (1), 37-54. [9]H. Li, Y. Tao, X. Zheng, J. Luo, F. Kang, H. M. Cheng, Q. H. Yang, 2016. Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage. Energy Environ. Sci., 9, 3135-3142. [10]S. Wang, N. Liu, J. Su, L. Li, F. Long, Z. Zou, X. Jiang, Y. Gao, 2017. Highly Stretchable and Self-Healable Supercapacitor with Reduced Graphene Oxide Based Fiber Springs. ACS Nano, 11 (2), 2066-2074. [11]J. Kang, H. Kim, K.S. Kim, S.-K. Lee, S. Bae, J.-H. Ahn, Y.-J. Kim, J.-B. Choi, B.H. Hong, 2011. High-Performance Graphene-Based Transparent Flexible Heaters. Nano Lett. 11, 5154–5158. [12]R. Phatthanakun, P. Deekla, W. Pummara, C. Sriphung, C. Pantong, N.Chomnawang, 2011. Fabrication and control of thin-film aluminium microheater and nickel temperature sensor, in: 8th Electrical Engineering/Electronics,Computer, Telecommunications and Information Technology (ECTI) Association of Thailand Conference, Khon Kaen, 14–17. [13]J. Kang, Y. Jang, Y. Kim, S. H. Cho, J. Suhr, B. H. Hong, J. B. Choi, D. Byun, 2015. An Ag-grid/graphene hybrid structure for large-scale, transparent, flexible heaters. Nanoscale, 7, 6567. [14]S. Claramunt, O. Monereo, M. Boix, R. Leghrib, J. D. Prades, A. Cornet, P. Merino, C. Merino, A. Cirera, 2013. Flexible gas sensor array with an embedded heater based on metal decorated carbon nanofibers. Sensors and Actuators B, 187, 401-406. [15]M. R. Bobinger, F. J. Romero, A. S. Castillo, M. Becherer, P. Lugli, D. P. Morales, N. Rodríguez, A. Rivadeneyra, 2019. Flexible and robust laser-induced graphene heaters photothermally scribed on bare polyimide substrates. Carbon, 144, 116-126. [16]C. C. Yang, W. T. Hsiao, C. K. Chung, H. Y. Tsai, J. L.A. Yeh, K. C. Huang, 2014. Microelectrode patterning of metal films using pulsed UV-laser system, Appl. Phys. A-Mater., 117, 161–168. [17]B. Y. Zhou, Q. Bao, B. Varghese, L. A. L. Tang, C. K. Tan, C. H. Sow, K. P. Loh, 2010. Microstructuring of Graphene Oxide Nanosheets Using Direct Laser Writing. Adv. Mater., 22, 67–71. [18]M. E. E. Alahi, A. Naga, S. C. Mukhopadhyay, L. Burkitt, 2018. A temperature-compensated graphene sensor for nitrate monitoringin real-time application. Sensors and Actuators A, 269, 79–90. [19]D. Nieto, P.McGlynnc, M. d. Fuente, R. L. Lopez, G. M. O’connor, 2017. Laser microfabrication of a microheater chip for cell culture outside a cell incubator. Colloids and Surfaces B: Biointerfaces, 154, 263–269. [20]D. Wu, L. Deng, X. Mei, K. S. Teh, W. Cai, Q. Tan, Y. Zhao, L. Wang, L. Zhao, G. Luo, D. Sun, L. Lin, 2017. Direct-write graphene resistors on aromatic polyimide for transparent heating glass. Sensors and Actuators A, 267, 327–333. [21]P. Nayak, N. Kurra, C. Xia, H.N. Alshareef, 2016. Highly efficient laser scribed graphene electrodes for on-chip electrochemical sensing applications. Adv. Electron. Mater., 2 (10), 1600185. [22]J. Lin, Z. Peng, Y. Liu, F. R. Zepeda, R. Ye, E. L. G. Samuel, M. J. Yacaman, B. I. Yakobson, J. M. Tour, 2014. Laser-inducedporous graphene films from commercial polymers.Nat. Commun., 5, 5714. [23]S. L. Jia, H. Z. Geng, L. Wang, Y. Tian, C. X. Xu, P. P. Shi, Z. Z. Gu, X. S. Yuan, L. C. Jing, Z. Y. Guo, J. Kong,. “ Carbon nanotube-based flexible electrothermal film heaters with a high heating rate”, R. Soc. Open Sci., (2018) 5 (6), 172072. [24]A-Young Kim, Min Kyu Kim, Chairul Hudaya, e Ji Hun Park, Dongjin Byun, Jong Choo Lim, and Joong Kee Lee, “Oxidation-resistant hybrid metal oxides/metal nanodots/silver nanowires for high performance flexible transparent heaters” Nanoscale, (2016), 8, 3307 [25]Shuwang Wu, Linhai Li, Han Xue, Kai Liu, Qingrui Fan, Guoying Bai, and Jianjun Wang, “Size Controllable, Transparent, and Flexible 2D Silver Meshes Using Recrystallized Ice Crystals as Templates” ACS Nano 2017, 11, 9898-9905 [26]Song-Lin Jia, Hong-Zhang Geng, Luda Wang, Ying Tian, Chun-Xia Xu, Pei-Pei Shi, Ze-Zeng Gu, Xue-Shuang Yuan, Li-Chao Jing, Zhi-Ying Guo, and Jing Kong, “Carbon nanotube-based flexible electrothermal film heaters with a high heating rate” 5.R. Soc. open sci.(2018) 2054-5703 [27]Rene Fischer, Alberto Gregori, Serhat Sahakalkan, David Hartmann, Patric Büchele, Sandro Francesco Tedde, Oliver Schmidt, “Stable and highly conductive carbon nanotube enhanced PEDOT:PSS as transparent electrode for flexible electronics” Organic Electronics 62 (2018) 351–356 [28]Tian-Yu Zhang, Hai-Ming Zhao, Dan-Yang Wang, Qian Wang, Yu Pang, Ning-Qin Deng, Hui-Wen Cao, Yi Yang, and Tian-Ling Ren, “A super flexible and custom-shaped graphene heater” Nanoscale, (2017), 9, 14357 [29]L. Vertuccio, F. De Santis, R. Pantani, K. Lafdi, L. Guadagno, “Effective de-icing skin using graphene-based flexible heater” Composites Part B 162 (2019) 600–610 [30]Shuyao Xie, Teng Li, Zijie Xu, Yanan Wang, Xiangyang Liua, Wenxi Guo, “High-response Transparent Heater Based on CuS nanosheets Film with Superior Mechanical Flexibility and Chemical Stability” Nanoscale (2018) ,10, 6531-6538 [31]Song-Lin Jia, Hong-Zhang Geng, Luda Wang, Ying Tian, Chun-Xia Xu, Pei-Pei Shi, Ze-Zeng Gu, Xue-Shuang Yuan, Li-Chao Jing, Zhi-Ying Guo, and Jing Kong, “Carbon nanotube-based flexible electrothermal film heaters with a high heating rate” 5.R. Soc. open sci.(2018) 2054-5703 [32]Francisco J. Romero, Almudena Rivadeneyra, Inmaculada Ortiz-Gomez, Alfonso Salinas, Andrés Godoy, Diego P. Morales, and Noel Rodriguez, “Inexpensive Graphene Oxide Heaters Lithographed by Laser” Nanomaterials (2019), [33]A-Young Kim, Min Kyu Kim, Chairul Hudaya, e Ji Hun Park, Dongjin Byun, Jong Choo Lim, and Joong Kee Lee, “Oxidation-resistant hybrid metal oxides/metal nanodots/silver nanowires for high performance flexible transparent heaters” Nanoscale, (2016), 8, 3307 [34]S. Manivannan, Je Hwang Ryu, Jin Jang, Kyu Chang Park, “Fabrication and effect of post treatment on flexible single-walled carbon nanotube films” J Mater Sci: Mater Electron (2010) 21:595–602 [35]Zhao-Chi Chen, Tien-Li Chang, Ching-Hao Li, Kai-Wen Su, Cheng-Che Liu, “Thermally stable and uniform DNA amplification with picosecond laser ablated graphene rapid thermal cycling device” Biosensors and Bioelectronics 146 (2019) 111581 [36]Hongyan Sun, Ding Chen, Chen Ye, Xinming Li, Dan Dai, Qilong Yuan, Kuan W.A. Chee, Pei Zhao, Nan Jiang, Cheng-Te Lin, “Large-area self-assembled reduced graphene oxide/electrochemically exfoliated graphene hybrid films for transparent electrothermal heaters” Applied Surface Science 435 (2018) 809–814 [37]Zhao-Chi Chen, Tien-Li Chang, Ching-Hao Li, Kai-Wen Su, Cheng-Che Liu, “Thermally stable and uniform DNA amplification with picosecond laser ablated graphene rapid thermal cycling device” Biosensors and Bioelectronics 146 (2019) 111581 [38]Francisco J. Romero, Almudena Rivadeneyra, Inmaculada Ortiz-Gomez, Alfonso Salinas, Andrés Godoy, Diego P. Morales, and Noel Rodriguez, “Inexpensive Graphene Oxide Heaters Lithographed by Laser” Nanomaterials (2019), [39]Zhengfen Wan, Erik W. Streed, Mirko Lobino, Shujun Wang, Robert T. Sang, Ivan S. Cole, David V. Thiel, and Qin Li, “Laser-Reduced Graphene: Synthesis, Properties, and Applications” Adv. Mater. Technol.(2018),3, 170031. [40]Emmanuel Kymakis, Member, IEEE, Constantinos Petridis, Thomas D. Anthopoulos, and Emmanuel Stratakis, “Laser-Assisted Reduction of Graphene Oxide for Flexible, Large-Area Optoelectronics” IEEE J. Sel. Top. Quantum Electron.(2014),20, 106–115 [41]L.M. Malard, , M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, “Raman spectroscopy in graphene” Physics Reports 473 (2009) 51–87 [42]Wang, Hui Cao, Xuewei Feng Min and Lan Guoxian J “Raman spectrosc”(2009),40 1791–1796 [43]L.M. Malard, , M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, “Raman spectroscopy in graphene” Physics Reports 473 (2009) 51–87 [44]Chien-Ping-Wang, Ching-Pong-Chou, Tien-Li-Chang, Cheng-Ying-Chou, “Micromachining of graphene based micro-capacitor using picosecond laser ablation” Microelectronic Engineering 189 (2018) 69–73 [45]Keun-Young Shin, Jin-Yong Hong, Seungae Lee and Jyongsik Jang, “High electrothermal performance of expanded graphite nanoplatelet-based patch heater” Cite this: J. Mater. Chem., (2012), 22, 23404 [46]Shih-Feng Tseng, “Picosecond laser micropatterning of graphene films for rapid heating chips” Applied Surface Science 450 (2018) 380–386Applied Surface Science 450 (2018) 380–386 [47]Luo Yi, YangKun, Shi Yunbo, Shang Chunxue, “Research of radiosonde humidity sensor with temperaturecompensation function and experimental verification” Sensors and Actuators A 218 (2014) 49–59 [48]A.Dey,“Semiconductor metal oxide gas sensors: a review”Mater. Sci. Eng. B,229(2018), pp.206-217 [49]A.M.Azad, S.A.Akbar, S.G.Mhaisalkar, L.D.Birkefeld, K.S.Goto, “Solid-state gas sensors: a review” J. Electrochem. Soc.,139(12)(1992), pp.3690-3704 [50]C.Hua, Y.Shang, Y.Wang, J.Xu, Y.Zhang, X.Li, A.Cao, “A flexible gas sensor based on single-walled carbon nanotube-Fe2O3 composite film” Appl. Surf. Sci.,405(2017), pp.405-411 [51]E.Llobet, “Gas sensors using carbon nanomaterials: a review” Sens. Actuators B Chem.,179(2013), pp.32-45 [52]P.Tyagi, A.Sharma, M.Tomar, V.Gupta“A comparative study of RGO-SnO2 and MWCNT-SnO2 nanocomposites based SO2 gas sensors” Sens. Actuators B Chem.,248(2017), pp.980-986 [53]S.R. Jamnani, H.M.Moghaddam, S.G.Leonardi, N.Donato, G.Neri“Synthesis and characterization of Sm2O3 nanorods for application as a novel CO gas sensor” Appl. Surf. Sci.,479(2019), pp.525-531 [54]Y.Seekaew, C.Wongchoosuk, “A novel graphene-based electroluminescent gas sensor for carbon dioxide detection” Appl. Surf. Sci.,479(2019), pp.525-531 [55]S.Cichosz, A.Masek, M.Zaborski, “Polymer-based sensors: a review” Polym. Test.,67(2018), pp.342-348 [56]H.S.Hong, N.H.Phuong, N.T.Huong, N.H.Nam, N.T.Hue, “Highly sensitive and low detection limit of resistive NO2 gas sensor based on a MoS2/graphene two-dimensional heterostructures” Appl. Surf. Sci.,492(2019), pp.449-454 [57]T.L.Chang, C.Y.Chou, C.P.Wang, T.C.Teng, H.C.Han“Picosecond laser-direct fabrication of graphene-based electrodes for a gas sensor module with wireless circuits” Microelectron. Eng.,210(2019), pp.19-26 [58]Y.Seekaew,mC.Wongchoosuk, “A novel graphene-based electroluminescent gas sensor for carbon dioxide detection” Appl. Surf. Sci.,479(2019), pp.525-531 [59]M. R. Bobinger, F. J. Romero, A. S. Castillo, M. Becherer, P. Lugli, D. P. Morales, N. Rodríguez, A. Rivadeneyra, (2019). “ Flexible and robust laser-induced graphene heaters photothermally scribed on bare polyimide substrates”. Carbon, 144, 116-126 [60]C. C. Yang, W. T. Hsiao, C. K. Chung, H. Y. Tsai, J. L.A. Yeh, K. C. Huang, (2014). “Microelectrode patterning of metal films using pulsed UV-laser system”, Appl. Phys. A-Mater., 117, 161–168. [61]Cheng-Ying Chou, Shih-Feng Tseng, Tien-Li Chang, Chen-Ting Tu, Hsieh-Cheng Han, “Controlled bridge growth of ZnO nanowires on laser-scribed graphene-based devices for NO gas detection” Applied Surface Science Volume 508,1 April (2020), 145204 [62]Song-Lin Jia,Hong-Zhang Geng, Luda Wang, Ying Tian, Chun-Xia Xu,Pei-Pei Shi, Ze-Zeng Gu, Xue-Shuang Yuan, Li-Chao Jing, Zhi-Ying Guo, and Jing Kong, “Carbon nanotube-based flexible electrothermal film heaters with a high heating rate” Royal Society open science (2018), [63]Jin Wu, Zixuan Wu, Haojun Ding, Yaoming Wei, Xing Yang, Zhenyi Li, Bo-Ru Yang, Chuan Liu, Lin Qiu and Xiaotian Wang“Multifunctional and High-Sensitive Sensor Capable of Detecting Humidity, Temperature, and Flow Stimuli Using an Integrated Microheater” ACS Appl. Mater. Interfaces (2019), 11, 43383−43392 [64]Md Eshrat E. Alah, Anindya Nag, Subhas Chandra Mukhopadhyay, Lucy Burkitt, “A temperature-compensated graphene sensor for nitrate monitoring in real-time application” Sensors and Actuators A: Physical Volume 269,1 January (2018), Pages 79-90 [65]P.Sun, M.Zhu, K.Wang, M.Zhong, J.Wei, D.Wu, H.Zhu, “Small temperature coefficient of resistivity of graphene/graphene oxide hybrid membranes” Acs Appl. Mater. Inter.,5(19)(2013), pp.9563-9571 [66]F.Yavari, Z.Chen, A.V.Thomas, W.Ren, H.-M.Cheng, N.Koratkar, “High sensitivity gas detection using a macroscopic three-dimensional graphene foam network” Sci. Rep.,1(2011), p.166 [67]I.Hotovy, V.Rehacek, F.Mika, T.Lalinsky, S.Hascik, G.Vanko, M.Drzik, “Gallium arsenide suspended microheater for MEMS sensor arrays” Microsyst. Technol.,14(2008), pp.629-635 [68]J.T.Omme, M.Zakhozheva, R.G.Spruit, M.Sholkina, H.H.P.Garza,“Advanced microheater for in situ transmission electron microscopy; enabling unexplored analytical studies and extreme spatial stability” Ultramicroscopy.,192(2018), pp.14-20 [69]Cheng-Ying Chou, Shih-Feng Tseng, Tien-Li Chang, Chen-Ting Tu, Hsieh-Cheng Han, “Controlled bridge growth of ZnO nanowires on laser-scribed graphene-based devices for NO gas detection”Applied Surface Science Volume 508,1 April (2020), 145204 [70]Chi Zhang, Yunchao Xie, Cheng Zhang, Jian Lin, “Upgrading coal to multifunctional graphene-based materials by directlaser scribing”Carbon, volume 153 (2019), 585-591 [71]S.Narasimman, L.Balakrishnan, S.R. Meher, R. Sivacoumar, Z.C. Alex, “Influence of surface functionalization on the gas sensing characteristics of ZnO nanorhombuses” J. Alloy. Compd.,706(2017), pp.186-197 [72]M. Sangeetha, D. Madhan “Ultra sensitive molybdenum disulfide(MoS2)/ graphene based hybrid sensor for the detection of NO2 and formaldehyde gases by fiber optic clad modified method” Optics and Laser Technology 127 (2020) 106193 [73]Bing Xu, Jun Huang, Xiaofeng Xu, Ai Zhou, and Liyun Ding “Ultrasensitive NO Gas Sensor Based on the Graphene Oxide-Coated Long-Period Fiber Grating” ACS Appl. Mater. Interfaces (2019), 11, 40868−40874 [74]Jin Wu, Yaoming Wei, Haojun Ding, Zixuan Wu, Xing Yang, Zhenyi Li, Wenxi Huang, Xi Xie, Kai Tao, and Xiaotian Wang, “Green Synthesis of 3D Chemically Functionalized Graphene Hydrogel for High-Performance NH3 and NO2 Detection at Room Temperature” : ACS Appl. Mater. Interfaces (2020), 12, 20623−20632 [75]Chung, Min Gyun; Kim, Dai Hong; Lee, Hyun Myoung; Kim, Taewoo; Choi, Jong Ho; Seo, Dong kyun; Yoo, Ji-Beom; Hong, Seong-Hyeon; Kang, Tae June; Kim, Yong Hyup, “Highly sensitive NO2 gas sensor based on ozone treated graphene” : Sensors and Actuators, B: Chemical (2012), 166-167, 172-176 [76]Wu, Zuquan; Chen, Xiangdong; Zhu, Shibu; Zhou, Zuowan; Yao, Yao; Quan, Wei; Liu, Bin, “Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite” : Sensors and Actuators, B: Chemical (2013),178 [77]Lu, Ganhua; Park, Sungjin; Yu, Kehan; Ruoff, Rodney S.; Ocola, Leonidas E.; Rosenmann, Daniel; Chen, Junhong, “Toward Practical Gas Sensing with Highly Reduced Graphene Oxide: A New Signal Processing Method To Circumvent Run-to-Run and Device-to-Device Variations” : ACS Nano (2011), 5 (2),1154-1164 [78]Cheng-Ying Chou, Shih-Feng Tseng, Tien-Li Chang, Chen-Ting Tu, Hsieh-Cheng Han, “Controlled bridge growth of ZnO nanowires on laser-scribed graphene-based devices for NO gas detection”Applied Surface Science Volume 508,1 April (2020), 145204 [79]Fowler, J. D.; Allen, M. J.; Tung, V. C, “Practical Chemical Sensors from Chemically Derived Graphene”. ACS Nano (2009), 3, 301– 306, DOI: 10.1021/nn800593m [80]Cui, S.; Wen, Z.; Mattson, E. C, “Indium-Doped Sno2 Nanoparticle-Graphene Nanohybrids: Simple One-Pot Synthesis and Their Selective Detection of No2”. J. Mater. Chem. A (2013), 1, 4462– 4467, DOI: 10.1039/c3ta01673k [81]Kampa, M.; Castanas, E, “Human Health Effects of Air Pollution. Environ. Pollut”. (2008), 151, 362– 367, DOI: 10.1016/j.envpol.2007.06.012 [82]H.-Y. Li, Z.-X. Cai, J.-C. Ding, X. Guo, “Gigantically enhanced NO sensing properties of WO3/SnO2 double layer sensors with Pd decoration” Sens. Actuators, B, 220 (2015), pp. 398-405 [83]G.F. Fine, L.M. Cavanagh, A. Afonja, R. Binions, “Metal oxide semi-conductor gas sensors in environmental monitoring” Sensors-Basel, 10 (2010), pp. 5469-5502 [84]P. Pacher, J.S. Beckman, L. Liaudet, “Nitric oxide and peroxynitrite in health and disease” Physiol Rev, 87 (2007), pp. 315-424 [85]J.P. Bolaños, A. Almeida, V. Stewart, S. Peuchen, J.M. Land, J.B. Clark, S.J. Heales, “Nitric oxide-mediated mitochondrial damage in the brain: Mechanisms and implications for neurodegenerative diseases” J. Neurochem., 68 (1997), pp. 2227-2240 [86]A. Novoradovsky, M.L. Brantly, M.A. Waclawiw, P.P. Chaudhary, H. Ihara, L. Qi, N. Tony Eissa, P.M. Barnes, K.M. Gabriele, M.E. Ehrmantraut, “Endothelial nitric oxide synthase as a potential susceptibility gene in the pathogenesis of emphysema in α 1-antitrypsin deficiency” Am. J. Resp. Cell Mol., 20 (1999), pp. 441-447 [87]S. Zhuiykov, N. Miura, “Development of zirconia-based potentiometric NO x sensors for automotive and energy industries in the early 21st century: What are the prospects for sensors? ” Sens. Actuat., B, 121 (2007), pp. 639-651 [88]Righettoni, Marco; Amann, Anton; Pratsinis, Sotiris E. , “Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors ” Mater. Today (2015), 18, 163– 171 [89]Changgu Lee, Xiaoding Wei, Jeffrey W. Kysar, James Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene” Science 2008, 321, 385–388 [90]M., Tian, Y., Hao, L., Qu, S. Zhu, X. Zhang, S. Chen “Enhanced electrothermal efficiency of flexible graphene fabric joule heaters with the aid of graphene oxide”Mater. Lett., 234 (2019), pp. 101-104 [91]R. Fischera, A. Gregoria, S. Sahakalkan, D. Hartmann, P. Büchele, S.F. Tedde, O. Schmidt“Stable and highly conductive carbon nanotube enhanced PEDOT:PSS as transparent electrode for flexible electronics”Org. Electron., 62 (2018), pp. 351-356 [92]D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, Y. Chen“Flexible and transparent electrothermal film heaters based on graphene materials”Small, 7 (2011), pp. 3186-3192 [93]M.S.M.Shukri, M.N.S.Saimin, M.K.Yaakob, M.Z.A.Yahya, M.F.M.Taib, “Structural and electronic properties of CO and NO gas molecules on Pd- doped vacancy graphene A first principles study” Applied Surface Science 494 (2019) 817-828 [94]Xiongyi Liang, Siu-Pang Ng, Ning Ding, Chi-Man Lawrence Wu, “Thermal stability of NO on Ga-doped graphene and effect of external electricfield” Computational Materials Science 151 (2018) 214-221
|