跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:2119:b261:d24c:ce10) 您好!臺灣時間:2025/01/21 07:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭銘宏
研究生(外文):HSIAO, MING-HUNG
論文名稱:可撓式石墨烯微加熱器及氣體感測器之研究
論文名稱(外文):The Investigation of Flexible Graphene Micro-heater Combined with Gas Sensor
指導教授:王建評
指導教授(外文):WANG, CHIEN-PING
口試委員:李懿軒張天立王建評
口試委員(外文):LEE, YI-HSUANCHANG, TIEN-LIWANG, CHIEN-PING
口試日期:2020-07-16
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:76
中文關鍵詞:皮秒雷射石墨烯微加熱器電熱可撓性
外文關鍵詞:Ultrafast laserGrapheneMicro-heaterElectrothermalFlexible
相關次數:
  • 被引用被引用:0
  • 點閱點閱:270
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
近年來加熱器逐漸朝向微型化與可攜帶性的方向持續發展演進,可撓性電熱加熱器在可穿戴電子產品被廣泛應用以及作為醫療設備上的撓性加熱器引起廣泛的關注,高效電熱加熱器需要同時具備較高之電導率及導熱率以達到有效地產生焦耳熱,低輸入電壓對於確保加熱器安全使用至關重要。然而,低電壓通常導致低的加熱溫度及加熱速率,如何在低電壓狀態下並保持高電熱效率仍然是個挑戰。由於石墨烯的優勢在於其獨特的熱、機械、化學、和光特性等,賦予石墨烯在各個領域上具備相當的潛力應用,包括計算、醫學、電子產品、水淨化、防水材料、能量儲存等,吸引了許多研究人員的注意,石墨烯具有高的熱傳導率(5000 W m-1K-1),出色的導熱性確保石墨烯可以提供快速響應和均勻的溫度分佈,以及低的輸出電壓使其具備高安全性,這對於加熱器非常重要,而石墨烯的二維六邊形共軛結構賦予其良好的機械彎曲性能使其在撓性加熱器中具有巨大的優勢,基於石墨烯的電熱加熱裝置具有高的能量轉換效率,快速的電熱響應和可撓性的優點。由於這些設備也是透明的,因此它們也可以用於窗戶除霜器,戶外顯示器,電子皮膚和氣體感測器等應用中。因此,可以由文獻中找到許多製造基於石墨烯的高質量微型加熱器的技術,迄今為止,已開發出多種方法來製作石墨烯微加熱器,包括化學氣相沉積,光刻,噴射印刷和雷射。直接雷射寫入是一種快速,可擴展且非接觸式的工藝,可以在石墨烯上製造微結構。隨著現在技術的飛速發展,在醫療保健、電子產品、機械設備等,可撓式加熱器變的越來越重要,將石墨烯旋塗於可撓式PET基板上,通過加熱使石墨稀油墨與基材良好結合,從而使石墨烯薄膜具備出色的可彎曲性,對於可穿戴之設備應用如熱夾克、熱袋與人造皮膚之類,非常需要電器安全性、可撓性、高轉換效率、重量輕以及低成本的要求。雷射直寫可以在PET基板表面上加工高精度電極圖案化,並能輕鬆的製作所需加熱器及感測器之形狀,形狀通過計算機設計並可以通過軟件輕鬆修改,雷射加工不需要任何化學試劑,因此是一種清潔且環保的加工方式,雷射使一種可擴展及低成本的非接觸式工藝。在這裡,我們提出一種簡單、快速、低成本之雷射直寫,用於製造高品質之石墨烯微加熱器電極與石墨稀感測器電極結合,以對NO氣體進行檢測,在最佳的實驗條件下,開發的石墨烯微加熱器與石墨烯感測器成功應用於加熱方面與NO氣體感測之成果。本研究開發了一種可用於高效溫度控制的可撓性石墨烯微加熱器,並通過超快雷射燒蝕具有出色的長期性能。討論了輸入電壓(V),電極寬度(W)和電極圖案(2-4指),以確定它們對微加熱器的電熱響應和開關性能的影響。實驗結果證實了微加熱器在不同輸入電壓下的開-關操作過程中的出色性能。在W = 500 m變化的電極模式的情況下,從10 V到30 V的輸入電壓,穩態時間tss小於3 s,穩態時間tss定義為可撓性加熱器從室溫達到穩態溫度時所花費的時間,它是確定可撓性加熱器動態性能的一個關鍵參數。使用超快雷射燒蝕,微加熱器的加熱速率高達15.7 ˚C/ s。實驗結果表明,隨著電極指數量的減少,加熱器溫度相對於輸入電壓的增加速率增加,特別是在高輸入電壓下。熱循環和彎曲實驗表明,微加熱器具有出色的溫度穩定性和耐用性(<1 ˚C)。本研究表明,可撓性石墨烯微加熱器是一種高效且可靠的設備,適用於使用超快雷射燒蝕的加熱應用。並且基於石墨烯微加熱器之結構增加石墨烯感測器,通過一次性加工製作可用於高性能之氣體感測器,近年來,石墨烯感測器設計在各方面取得了很多突出成果,各種石墨烯感測器被製作出來,石墨烯基氣體感測器具備超高的選擇性與靈敏度,但由於吸附的氣體分子與石墨烯相互作用使得恢復速率較慢,因此本研究將石墨烯微加熱器結合感測器應用以加熱方式對感測器吸附之氣體進行解吸附,使感測器恢復速率加快。
In recent years, heaters have gradually evolved toward miniaturization and portability.Flexible electric heaters have been widely applied in wearable electronic products.Also, more concerns emphasize on the application of flexible heaters in medical equipment.High-efficiency electric heaters require high electrical conductivity and thermal conductivity to effectively generate Joule heat at the same time. In addition, Low input voltage is essential to ensure the safety of using the heater. However, low voltage usually results in low heating temperature and heating rate. In this case, how to maintain high electrothermal efficiency under low voltage is still a challenge.Due to graphene’s unique thermal, mechanical, chemical, and optical properties, it gives graphene considerable potential applications in various fields, including computing, medicine, electronic products, water purification, waterproof materials, energy storage, etc. Therefore, it has brought attention to many researchers. Graphene has a high thermal conductivity (5000 W m-1K-1) as well as excellent thermal conductivity so it can provide rapid response and uniform temperature distribution. Meanwhile, low output voltage makes the heaters possess high safety which is very important for heaters. Moreover, two-dimensional hexagonal conjugated structure of graphene provides good mechanical bending properties which contributes a great advantage in flexible heaters. The advantages of Graphene-based electric heating device includes high energy conversion efficiency, fast electrothermal response and flexibility. Since these devices are transparent, they can also be used in applications such as window defrosters, outdoor displays, electronic skins, and gas sensors. As a result, many techniques for manufacturing high-quality graphene-based micro heaters can be found in the literature. To date, a variety of methods have been developed to make graphene micro heaters, including chemical vapor deposition, lithography, jet printing, and laser Shoot. Direct laser writing is a fast, scalable, and non-contact process that can produce microstructures on graphene.With the rapid development of current technology, flexible heaters have become more and more important in healthcare, electronic products, and mechanical equipment. Graphene is spin-coated on a flexible PET substrate, and the graphene ink is heated Good combination with the substrate and also the graphene ink for heated in combination with good substrate, so that the graphene thin film with excellent bendability, the wearable device with applications such as heat jackets, the heat bag and the artificial skin for the like, a great need for electrical safety, flexibility, high conversion efficiency, Laser direct writing can process high-precision electrode patterning on the surface of the PET substrate, and can easily produce the desired shape. The shape is designed by computer and can be easily modified by software. Laser processing does not require any chemical reagents, so it is a kind of Clean and environmentally friendly processing method, laser makes a scalable with for low-cost non-contact process.Herein, we propose a simple, fast and low-cost laser direct writing method for manufacturing high-quality graphene micro heater electrodes combined and graphene sensor electrodes to detect NO gas. Under the experimental conditions, the developed graphene micro-heater with graphene sensor were successfully applied to the results of heating and NO gas sensing.This study developed a flexible graphene micro-heater that can be used for high efficient temperature control and has outstanding long-term performance using ultrafast laser ablation. The input voltages (V), electrode widths (W), and electrode patterns (2-4 finger) were discussed to determine their effects on electrothermal response and switching performance of the micro-heaters. The experimental results confirmed that outstanding performance of the micro-heaters during on−off operation under varying input voltages. At the condition of W=500μ m, time to steady state (tss) were less than 3 seconds for the input voltages from 10 V to 30 V under varying electrode patterns.The micro-heater exhibited a superior heating rate of 15.7 ˚C/s using ultrafast laser ablation. The response time, the time consumption for the heater to reach the steady-state temperature from room temperature, is another crucial parameter in determining the dynamic performance of the flexible heater. The experimental results revealed that under high input voltages, if the number of electrode fingers decreased, increasing rate of heater temperature with respect to input voltage may increase. The thermal cycling and bending experiments revealed that the micro-heater has excellent temperature stability and durability (< 1 ˚C). The present study showed that the flexible graphene micro-heater is a high efficient and a reliable device for heating applications using ultrafast laser ablations. And based on the structure of graphene micro heaters, graphene sensors are added, and gas sensors that can be used for high performance are manufactured through one-time processing.In recent years, graphene sensor design has achieved many outstanding results in various aspects, and various graphene sensors have been produced. , graphene-based gas sensor includes ultra-high selectivity and sensitivity, but due to adsorption of gas molecules such that interaction of graphene recovery rate is slower, so the present study bonding the graphene micro heater in a heating mode sensor applications the sensor adsorption The desorption of the gas accelerates the recovery rate of the sensor.
摘 要 i
ABSTRACT iv
誌 謝 vii
目 錄 viii
表目錄 xi
圖目錄 xii
第一章 緒論 1
1.1前言 1
1.1 石墨烯簡介 2
1.2加熱器簡介 4
1.3感測器簡介 5
1.4文獻回顧 6
1.5研究目的 10
第二章 理論基礎、研究方法 12
2.1 紅外線熱影像即時溫度分析系統原理 12
2.1.1 熱像儀結構 13
2.1.2 放射率 14
2.2 熱傳導理論 15
2.3 Raman(拉曼光譜分析) 18
2.3.1石墨烯拉曼光譜 18
2.4掃描式電子顯微鏡(SEM) 22
第三章 實驗架構 24
3.1皮秒雷射(P S Laser) 24
3.1.1石墨烯基版製備 24
3.1.2皮秒雷射規格 24
3.1.2石墨烯微加熱器製備 25
3.2熱像儀量測 27
3.2.1測量儀器 27
3.2.2拍攝流程 28
3.3石墨烯微加熱器實驗架構 29
3.3.1 實驗樣品 29
3.3.2實驗設置 29
3.2.3實驗參數 31
3.2.4實驗方法 32
3.4石墨烯微加熱器感測器實驗架構 34
3.4.1 實驗樣品 34
3.4.2實驗設置 34
3.4.3實驗參數 35
3.4.4實驗方法 35
第四章 結果與討論 37
4.1石墨烯微加熱器實驗結果 37
4.1.1石墨烯電極、I-V特性、電阻變化 37
4.1.2石墨烯特性Raman、SEM結構量測 38
4.1.3石墨烯微加熱器電熱響應 43
4.1.4石墨烯微加熱器與COMSOL模擬對比 51
4.1.5石墨烯微加熱器輸入電壓與溫度影響 52
4.1.6石墨烯微加熱器熱循環測式 56
4.2石墨烯微加熱器感測器實驗結果 58
4.2.1石墨烯微加熱器感測器電極 58
4.2.2石墨烯微加熱器感測器電阻響應 58
4.2.3石墨烯微加熱器感測器NO氣體響應 61
第五章 結論與未來展望 67
5.1結論 67
5.2未來展望 68
參考文獻 69


[1]D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, and Y. Chen, 2011. Flexible and Transparent Electrothermal Film Heaters Based on Graphene Materials. Small 7, 3186-3192.
[2]F. J. Romero, A. Rivadeneyra, I. Ortiz-Gomez, A. Salinas, A. Godoy, D. P. Morales, N. Rodriguez, 2019. Inexpensive Graphene Oxide Heaters Lithographed by Laser. Nanomaterials 9 (9), 1184.
[3]M. Tian, Y. Hao, L. Qu, S. Zhu, X. Zhang, S. Chen, 2019. Enhanced electrothermal efficiency of flexible graphene fabric Joule heaters with the aid of graphene oxide. Materials Letters 234, 101–104.
[4]Y. Song, Y. Luo, C. Zhu, H. Li, D. Du, Y. Lin, 2016. Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials. Biosensors and Bioelectronics, 76 (15), 195-212.
[5]S. Afsahia, M. B. Lerner, J. M. Goldstein, J. Lee, X. Tang, D. A. Bagarozzi Jr., D. Pan, L. Locascio, A. Walker, F. Barron, B. R. Goldsmith, 2018. Biosensors and Bioelectronics, 100 (15), 85-88.
[6]Y. Zhou, M. Ma, H. He, Z. Cai, N. Gao, C. He, G. Chang, X. Wang, Y. He, 2019. Highly sensitive nitrite sensor based on AuNPs/RGO nanocomposites modified graphene electrochemical transistors. Biosensors and Bioelectronics, 146 (15), 111751.
[7]T. L. Chang, C. Y. Chou, C. P. Wang, T. C. Teng, Hsieh-Cheng Han, 2019. Picosecond laser-direct fabrication of graphene-based electrodes for a gas sensor module with wireless circuits. Microelectronic Engineering, 210, 19–26.
[8]Q. Ke, J. Wang, 2016. Graphene-based materials for supercapacitor electrodes – A review, Journal of Materiomics, 2 (1), 37-54.
[9]H. Li, Y. Tao, X. Zheng, J. Luo, F. Kang, H. M. Cheng, Q. H. Yang, 2016. Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage. Energy Environ. Sci., 9, 3135-3142.
[10]S. Wang, N. Liu, J. Su, L. Li, F. Long, Z. Zou, X. Jiang, Y. Gao, 2017. Highly Stretchable and Self-Healable Supercapacitor with Reduced Graphene Oxide Based Fiber Springs. ACS Nano, 11 (2), 2066-2074.
[11]J. Kang, H. Kim, K.S. Kim, S.-K. Lee, S. Bae, J.-H. Ahn, Y.-J. Kim, J.-B. Choi, B.H. Hong, 2011. High-Performance Graphene-Based Transparent Flexible Heaters. Nano Lett. 11, 5154–5158.
[12]R. Phatthanakun, P. Deekla, W. Pummara, C. Sriphung, C. Pantong, N.Chomnawang, 2011. Fabrication and control of thin-film aluminium microheater and nickel temperature sensor, in: 8th Electrical Engineering/Electronics,Computer, Telecommunications and Information Technology (ECTI) Association of Thailand Conference, Khon Kaen, 14–17.
[13]J. Kang, Y. Jang, Y. Kim, S. H. Cho, J. Suhr, B. H. Hong, J. B. Choi, D. Byun, 2015. An Ag-grid/graphene hybrid structure for large-scale, transparent, flexible heaters. Nanoscale, 7, 6567.
[14]S. Claramunt, O. Monereo, M. Boix, R. Leghrib, J. D. Prades, A. Cornet, P. Merino, C. Merino, A. Cirera, 2013. Flexible gas sensor array with an embedded heater based on metal decorated carbon nanofibers. Sensors and Actuators B, 187, 401-406.
[15]M. R. Bobinger, F. J. Romero, A. S. Castillo, M. Becherer, P. Lugli, D. P. Morales, N. Rodríguez, A. Rivadeneyra, 2019. Flexible and robust laser-induced graphene heaters photothermally scribed on bare polyimide substrates. Carbon, 144, 116-126.
[16]C. C. Yang, W. T. Hsiao, C. K. Chung, H. Y. Tsai, J. L.A. Yeh, K. C. Huang, 2014. Microelectrode patterning of metal films using pulsed UV-laser system, Appl. Phys. A-Mater., 117, 161–168.
[17]B. Y. Zhou, Q. Bao, B. Varghese, L. A. L. Tang, C. K. Tan, C. H. Sow, K. P. Loh, 2010. Microstructuring of Graphene Oxide Nanosheets Using Direct Laser Writing. Adv. Mater., 22, 67–71.
[18]M. E. E. Alahi, A. Naga, S. C. Mukhopadhyay, L. Burkitt, 2018. A temperature-compensated graphene sensor for nitrate monitoringin real-time application. Sensors and Actuators A, 269, 79–90.
[19]D. Nieto, P.McGlynnc, M. d. Fuente, R. L. Lopez, G. M. O’connor, 2017. Laser microfabrication of a microheater chip for cell culture outside a cell incubator. Colloids and Surfaces B: Biointerfaces, 154, 263–269.
[20]D. Wu, L. Deng, X. Mei, K. S. Teh, W. Cai, Q. Tan, Y. Zhao, L. Wang, L. Zhao, G. Luo, D. Sun, L. Lin, 2017. Direct-write graphene resistors on aromatic polyimide for transparent heating glass. Sensors and Actuators A, 267, 327–333.
[21]P. Nayak, N. Kurra, C. Xia, H.N. Alshareef, 2016. Highly efficient laser scribed graphene electrodes for on-chip electrochemical sensing applications. Adv. Electron. Mater., 2 (10), 1600185.
[22]J. Lin, Z. Peng, Y. Liu, F. R. Zepeda, R. Ye, E. L. G. Samuel, M. J. Yacaman, B. I. Yakobson, J. M. Tour, 2014. Laser-inducedporous graphene films from commercial polymers.Nat. Commun., 5, 5714.
[23]S. L. Jia, H. Z. Geng, L. Wang, Y. Tian, C. X. Xu, P. P. Shi, Z. Z. Gu, X. S. Yuan, L. C. Jing, Z. Y. Guo, J. Kong,. “ Carbon nanotube-based flexible electrothermal film heaters with a high heating rate”, R. Soc. Open Sci., (2018) 5 (6), 172072.
[24]A-Young Kim, Min Kyu Kim, Chairul Hudaya, e Ji Hun Park, Dongjin Byun, Jong Choo Lim, and Joong Kee Lee, “Oxidation-resistant hybrid metal oxides/metal nanodots/silver nanowires for high performance flexible transparent heaters” Nanoscale, (2016), 8, 3307
[25]Shuwang Wu, Linhai Li, Han Xue, Kai Liu, Qingrui Fan, Guoying Bai, and Jianjun Wang, “Size Controllable, Transparent, and Flexible 2D Silver Meshes Using Recrystallized Ice Crystals as Templates” ACS Nano 2017, 11, 9898-9905
[26]Song-Lin Jia, Hong-Zhang Geng, Luda Wang, Ying Tian, Chun-Xia Xu, Pei-Pei Shi, Ze-Zeng Gu, Xue-Shuang Yuan, Li-Chao Jing, Zhi-Ying Guo, and Jing Kong, “Carbon nanotube-based flexible electrothermal film heaters with a high heating rate” 5.R. Soc. open sci.(2018) 2054-5703
[27]Rene Fischer, Alberto Gregori, Serhat Sahakalkan, David Hartmann, Patric Büchele, Sandro Francesco Tedde, Oliver Schmidt, “Stable and highly conductive carbon nanotube enhanced PEDOT:PSS as transparent electrode for flexible electronics” Organic Electronics 62 (2018) 351–356
[28]Tian-Yu Zhang, Hai-Ming Zhao, Dan-Yang Wang, Qian Wang, Yu Pang, Ning-Qin Deng, Hui-Wen Cao, Yi Yang, and Tian-Ling Ren, “A super flexible and custom-shaped graphene heater” Nanoscale, (2017), 9, 14357
[29]L. Vertuccio, F. De Santis, R. Pantani, K. Lafdi, L. Guadagno, “Effective de-icing skin using graphene-based flexible heater” Composites Part B 162 (2019) 600–610
[30]Shuyao Xie, Teng Li, Zijie Xu, Yanan Wang, Xiangyang Liua, Wenxi Guo, “High-response Transparent Heater Based on CuS nanosheets Film with Superior Mechanical Flexibility and Chemical Stability” Nanoscale (2018) ,10, 6531-6538
[31]Song-Lin Jia, Hong-Zhang Geng, Luda Wang, Ying Tian, Chun-Xia Xu, Pei-Pei Shi, Ze-Zeng Gu, Xue-Shuang Yuan, Li-Chao Jing, Zhi-Ying Guo, and Jing Kong, “Carbon nanotube-based flexible electrothermal film heaters with a high heating rate” 5.R. Soc. open sci.(2018) 2054-5703
[32]Francisco J. Romero, Almudena Rivadeneyra, Inmaculada Ortiz-Gomez, Alfonso Salinas, Andrés Godoy, Diego P. Morales, and Noel Rodriguez, “Inexpensive Graphene Oxide Heaters Lithographed by Laser” Nanomaterials (2019),
[33]A-Young Kim, Min Kyu Kim, Chairul Hudaya, e Ji Hun Park, Dongjin Byun, Jong Choo Lim, and Joong Kee Lee, “Oxidation-resistant hybrid metal oxides/metal nanodots/silver nanowires for high performance flexible transparent heaters” Nanoscale, (2016), 8, 3307
[34]S. Manivannan, Je Hwang Ryu, Jin Jang, Kyu Chang Park, “Fabrication and effect of post treatment on flexible single-walled carbon nanotube films” J Mater Sci: Mater Electron (2010) 21:595–602
[35]Zhao-Chi Chen, Tien-Li Chang, Ching-Hao Li, Kai-Wen Su, Cheng-Che Liu, “Thermally stable and uniform DNA amplification with picosecond laser ablated graphene rapid thermal cycling device” Biosensors and Bioelectronics 146 (2019) 111581
[36]Hongyan Sun, Ding Chen, Chen Ye, Xinming Li, Dan Dai, Qilong Yuan, Kuan W.A. Chee, Pei Zhao, Nan Jiang, Cheng-Te Lin, “Large-area self-assembled reduced graphene oxide/electrochemically exfoliated graphene hybrid films for transparent electrothermal heaters” Applied Surface Science 435 (2018) 809–814
[37]Zhao-Chi Chen, Tien-Li Chang, Ching-Hao Li, Kai-Wen Su, Cheng-Che Liu, “Thermally stable and uniform DNA amplification with picosecond laser ablated graphene rapid thermal cycling device” Biosensors and Bioelectronics 146 (2019) 111581
[38]Francisco J. Romero, Almudena Rivadeneyra, Inmaculada Ortiz-Gomez, Alfonso Salinas, Andrés Godoy, Diego P. Morales, and Noel Rodriguez, “Inexpensive Graphene Oxide Heaters Lithographed by Laser” Nanomaterials (2019),
[39]Zhengfen Wan, Erik W. Streed, Mirko Lobino, Shujun Wang, Robert T. Sang, Ivan S. Cole, David V. Thiel, and Qin Li, “Laser-Reduced Graphene: Synthesis, Properties, and Applications” Adv. Mater. Technol.(2018),3, 170031.
[40]Emmanuel Kymakis, Member, IEEE, Constantinos Petridis, Thomas D. Anthopoulos, and Emmanuel Stratakis, “Laser-Assisted Reduction of Graphene Oxide for Flexible, Large-Area Optoelectronics” IEEE J. Sel. Top. Quantum Electron.(2014),20, 106–115
[41]L.M. Malard, , M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, “Raman spectroscopy in graphene” Physics Reports 473 (2009) 51–87
[42]Wang, Hui Cao, Xuewei Feng Min and Lan Guoxian J “Raman spectrosc”(2009),40 1791–1796
[43]L.M. Malard, , M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, “Raman spectroscopy in graphene” Physics Reports 473 (2009) 51–87
[44]Chien-Ping-Wang, Ching-Pong-Chou, Tien-Li-Chang, Cheng-Ying-Chou, “Micromachining of graphene based micro-capacitor using picosecond laser ablation” Microelectronic Engineering 189 (2018) 69–73
[45]Keun-Young Shin, Jin-Yong Hong, Seungae Lee and Jyongsik Jang, “High electrothermal performance of expanded graphite nanoplatelet-based patch heater” Cite this: J. Mater. Chem., (2012), 22, 23404
[46]Shih-Feng Tseng, “Picosecond laser micropatterning of graphene films for rapid heating chips” Applied Surface Science 450 (2018) 380–386Applied Surface Science 450 (2018) 380–386
[47]Luo Yi, YangKun, Shi Yunbo, Shang Chunxue, “Research of radiosonde humidity sensor with temperaturecompensation function and experimental verification” Sensors and Actuators A 218 (2014) 49–59
[48]A.Dey,“Semiconductor metal oxide gas sensors: a review”Mater. Sci. Eng. B,229(2018), pp.206-217
[49]A.M.Azad, S.A.Akbar, S.G.Mhaisalkar, L.D.Birkefeld, K.S.Goto, “Solid-state gas sensors: a review” J. Electrochem. Soc.,139(12)(1992), pp.3690-3704
[50]C.Hua, Y.Shang, Y.Wang, J.Xu, Y.Zhang, X.Li, A.Cao, “A flexible gas sensor based on single-walled carbon nanotube-Fe2O3 composite film” Appl. Surf. Sci.,405(2017), pp.405-411
[51]E.Llobet, “Gas sensors using carbon nanomaterials: a review” Sens. Actuators B Chem.,179(2013), pp.32-45
[52]P.Tyagi, A.Sharma, M.Tomar, V.Gupta“A comparative study of RGO-SnO2 and MWCNT-SnO2 nanocomposites based SO2 gas sensors” Sens. Actuators B Chem.,248(2017), pp.980-986
[53]S.R. Jamnani, H.M.Moghaddam, S.G.Leonardi, N.Donato, G.Neri“Synthesis and characterization of Sm2O3 nanorods for application as a novel CO gas sensor” Appl. Surf. Sci.,479(2019), pp.525-531
[54]Y.Seekaew, C.Wongchoosuk, “A novel graphene-based electroluminescent gas sensor for carbon dioxide detection” Appl. Surf. Sci.,479(2019), pp.525-531
[55]S.Cichosz, A.Masek, M.Zaborski, “Polymer-based sensors: a review” Polym. Test.,67(2018), pp.342-348
[56]H.S.Hong, N.H.Phuong, N.T.Huong, N.H.Nam, N.T.Hue, “Highly sensitive and low detection limit of resistive NO2 gas sensor based on a MoS2/graphene two-dimensional heterostructures” Appl. Surf. Sci.,492(2019), pp.449-454
[57]T.L.Chang, C.Y.Chou, C.P.Wang, T.C.Teng, H.C.Han“Picosecond laser-direct fabrication of graphene-based electrodes for a gas sensor module with wireless circuits” Microelectron. Eng.,210(2019), pp.19-26
[58]Y.Seekaew,mC.Wongchoosuk, “A novel graphene-based electroluminescent gas sensor for carbon dioxide detection” Appl. Surf. Sci.,479(2019), pp.525-531
[59]M. R. Bobinger, F. J. Romero, A. S. Castillo, M. Becherer, P. Lugli, D. P. Morales, N. Rodríguez, A. Rivadeneyra, (2019). “ Flexible and robust laser-induced graphene heaters photothermally scribed on bare polyimide substrates”. Carbon, 144, 116-126
[60]C. C. Yang, W. T. Hsiao, C. K. Chung, H. Y. Tsai, J. L.A. Yeh, K. C. Huang, (2014). “Microelectrode patterning of metal films using pulsed UV-laser system”, Appl. Phys. A-Mater., 117, 161–168.
[61]Cheng-Ying Chou, Shih-Feng Tseng, Tien-Li Chang, Chen-Ting Tu, Hsieh-Cheng Han, “Controlled bridge growth of ZnO nanowires on laser-scribed graphene-based devices for NO gas detection” Applied Surface Science Volume 508,1 April (2020), 145204
[62]Song-Lin Jia,Hong-Zhang Geng, Luda Wang, Ying Tian, Chun-Xia Xu,Pei-Pei Shi, Ze-Zeng Gu, Xue-Shuang Yuan, Li-Chao Jing, Zhi-Ying Guo, and Jing Kong, “Carbon nanotube-based flexible electrothermal film heaters with a high heating rate” Royal Society open science (2018),
[63]Jin Wu, Zixuan Wu, Haojun Ding, Yaoming Wei, Xing Yang, Zhenyi Li, Bo-Ru Yang, Chuan Liu, Lin Qiu and Xiaotian Wang“Multifunctional and High-Sensitive Sensor Capable of Detecting Humidity, Temperature, and Flow Stimuli Using an Integrated Microheater” ACS Appl. Mater. Interfaces (2019), 11, 43383−43392
[64]Md Eshrat E. Alah, Anindya Nag, Subhas Chandra Mukhopadhyay, Lucy Burkitt, “A temperature-compensated graphene sensor for nitrate monitoring in real-time application” Sensors and Actuators A: Physical Volume 269,1 January (2018), Pages 79-90
[65]P.Sun, M.Zhu, K.Wang, M.Zhong, J.Wei, D.Wu, H.Zhu, “Small temperature coefficient of resistivity of graphene/graphene oxide hybrid membranes” Acs Appl. Mater. Inter.,5(19)(2013), pp.9563-9571
[66]F.Yavari, Z.Chen, A.V.Thomas, W.Ren, H.-M.Cheng, N.Koratkar, “High sensitivity gas detection using a macroscopic three-dimensional graphene foam network” Sci. Rep.,1(2011), p.166
[67]I.Hotovy, V.Rehacek, F.Mika, T.Lalinsky, S.Hascik, G.Vanko, M.Drzik, “Gallium arsenide suspended microheater for MEMS sensor arrays” Microsyst. Technol.,14(2008), pp.629-635
[68]J.T.Omme, M.Zakhozheva, R.G.Spruit, M.Sholkina, H.H.P.Garza,“Advanced microheater for in situ transmission electron microscopy; enabling unexplored analytical studies and extreme spatial stability” Ultramicroscopy.,192(2018), pp.14-20
[69]Cheng-Ying Chou, Shih-Feng Tseng, Tien-Li Chang, Chen-Ting Tu, Hsieh-Cheng Han, “Controlled bridge growth of ZnO nanowires on laser-scribed graphene-based devices for NO gas detection”Applied Surface Science Volume 508,1 April (2020), 145204
[70]Chi Zhang, Yunchao Xie, Cheng Zhang, Jian Lin, “Upgrading coal to multifunctional graphene-based materials by directlaser scribing”Carbon, volume 153 (2019), 585-591
[71]S.Narasimman, L.Balakrishnan, S.R. Meher, R. Sivacoumar, Z.C. Alex, “Influence of surface functionalization on the gas sensing characteristics of ZnO nanorhombuses” J. Alloy. Compd.,706(2017), pp.186-197
[72]M. Sangeetha, D. Madhan “Ultra sensitive molybdenum disulfide(MoS2)/ graphene based hybrid sensor for the detection of NO2 and formaldehyde gases by fiber optic clad modified method” Optics and Laser Technology 127 (2020) 106193
[73]Bing Xu, Jun Huang, Xiaofeng Xu, Ai Zhou, and Liyun Ding “Ultrasensitive NO Gas Sensor Based on the Graphene Oxide-Coated Long-Period Fiber Grating” ACS Appl. Mater. Interfaces (2019), 11, 40868−40874
[74]Jin Wu, Yaoming Wei, Haojun Ding, Zixuan Wu, Xing Yang, Zhenyi Li, Wenxi Huang, Xi Xie, Kai Tao, and Xiaotian Wang, “Green Synthesis of 3D Chemically Functionalized Graphene Hydrogel for High-Performance NH3 and NO2 Detection at Room Temperature” : ACS Appl. Mater. Interfaces (2020), 12, 20623−20632
[75]Chung, Min Gyun; Kim, Dai Hong; Lee, Hyun Myoung; Kim, Taewoo; Choi, Jong Ho; Seo, Dong kyun; Yoo, Ji-Beom; Hong, Seong-Hyeon; Kang, Tae June; Kim, Yong Hyup, “Highly sensitive NO2 gas sensor based on ozone treated graphene” : Sensors and Actuators, B: Chemical (2012), 166-167, 172-176
[76]Wu, Zuquan; Chen, Xiangdong; Zhu, Shibu; Zhou, Zuowan; Yao, Yao; Quan, Wei; Liu, Bin, “Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite” : Sensors and Actuators, B: Chemical (2013),178
[77]Lu, Ganhua; Park, Sungjin; Yu, Kehan; Ruoff, Rodney S.; Ocola, Leonidas E.; Rosenmann, Daniel; Chen, Junhong, “Toward Practical Gas Sensing with Highly Reduced Graphene Oxide: A New Signal Processing Method To Circumvent Run-to-Run and Device-to-Device Variations” : ACS Nano (2011), 5 (2),1154-1164
[78]Cheng-Ying Chou, Shih-Feng Tseng, Tien-Li Chang, Chen-Ting Tu, Hsieh-Cheng Han, “Controlled bridge growth of ZnO nanowires on laser-scribed graphene-based devices for NO gas detection”Applied Surface Science Volume 508,1 April (2020), 145204
[79]Fowler, J. D.; Allen, M. J.; Tung, V. C, “Practical Chemical Sensors from Chemically Derived Graphene”. ACS Nano (2009), 3, 301– 306, DOI: 10.1021/nn800593m
[80]Cui, S.; Wen, Z.; Mattson, E. C, “Indium-Doped Sno2 Nanoparticle-Graphene Nanohybrids: Simple One-Pot Synthesis and Their Selective Detection of No2”. J. Mater. Chem. A (2013), 1, 4462– 4467, DOI: 10.1039/c3ta01673k
[81]Kampa, M.; Castanas, E, “Human Health Effects of Air Pollution. Environ. Pollut”. (2008), 151, 362– 367, DOI: 10.1016/j.envpol.2007.06.012
[82]H.-Y. Li, Z.-X. Cai, J.-C. Ding, X. Guo, “Gigantically enhanced NO sensing properties of WO3/SnO2 double layer sensors with Pd decoration” Sens. Actuators, B, 220 (2015), pp. 398-405
[83]G.F. Fine, L.M. Cavanagh, A. Afonja, R. Binions, “Metal oxide semi-conductor gas sensors in environmental monitoring” Sensors-Basel, 10 (2010), pp. 5469-5502
[84]P. Pacher, J.S. Beckman, L. Liaudet, “Nitric oxide and peroxynitrite in health and disease” Physiol Rev, 87 (2007), pp. 315-424
[85]J.P. Bolaños, A. Almeida, V. Stewart, S. Peuchen, J.M. Land, J.B. Clark, S.J. Heales, “Nitric oxide-mediated mitochondrial damage in the brain: Mechanisms and implications for neurodegenerative diseases” J. Neurochem., 68 (1997), pp. 2227-2240
[86]A. Novoradovsky, M.L. Brantly, M.A. Waclawiw, P.P. Chaudhary, H. Ihara, L. Qi, N. Tony Eissa, P.M. Barnes, K.M. Gabriele, M.E. Ehrmantraut, “Endothelial nitric oxide synthase as a potential susceptibility gene in the pathogenesis of emphysema in α 1-antitrypsin deficiency” Am. J. Resp. Cell Mol., 20 (1999), pp. 441-447
[87]S. Zhuiykov, N. Miura, “Development of zirconia-based potentiometric NO x sensors for automotive and energy industries in the early 21st century: What are the prospects for sensors? ” Sens. Actuat., B, 121 (2007), pp. 639-651
[88]Righettoni, Marco; Amann, Anton; Pratsinis, Sotiris E. , “Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors ” Mater. Today (2015), 18, 163– 171
[89]Changgu Lee, Xiaoding Wei, Jeffrey W. Kysar, James Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene” Science 2008, 321, 385–388
[90]M., Tian, Y., Hao, L., Qu, S. Zhu, X. Zhang, S. Chen “Enhanced electrothermal efficiency of flexible graphene fabric joule heaters with the aid of graphene oxide”Mater. Lett., 234 (2019), pp. 101-104
[91]R. Fischera, A. Gregoria, S. Sahakalkan, D. Hartmann, P. Büchele, S.F. Tedde, O. Schmidt“Stable and highly conductive carbon nanotube enhanced PEDOT:PSS as transparent electrode for flexible electronics”Org. Electron., 62 (2018), pp. 351-356
[92]D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, Y. Chen“Flexible and transparent electrothermal film heaters based on graphene materials”Small, 7 (2011), pp. 3186-3192
[93]M.S.M.Shukri, M.N.S.Saimin, M.K.Yaakob, M.Z.A.Yahya, M.F.M.Taib, “Structural and electronic properties of CO and NO gas molecules on Pd- doped vacancy graphene A first principles study” Applied Surface Science 494 (2019) 817-828
[94]Xiongyi Liang, Siu-Pang Ng, Ning Ding, Chi-Man Lawrence Wu, “Thermal stability of NO on Ga-doped graphene and effect of external electricfield” Computational Materials Science 151 (2018) 214-221

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊