(3.239.159.107) 您好!臺灣時間:2021/03/08 20:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉雅心
研究生(外文):YEH, YA-SHIN
論文名稱:二硫化鎢奈米管修飾之複合導電紙基電化學感測器應用於丙型干擾素檢測之研究
論文名稱(外文):Study on the Composite Conductive Paper-based Electrochemical Sensor Modified by Tungsten Disulfide Nanotubes for the Detection of Interferon-gamma
指導教授:顏毅廣
指導教授(外文):YEN, YI-KUANG
口試委員:陳建甫楊閎蔚顏毅廣
口試委員(外文):CHEN, CHIEN-FUYANG, HONG-WEIYEN, YI-KUANG
口試日期:2020-07-20
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:106
中文關鍵詞:丙型干擾素電化學分析紙基電極二硫化鎢適體
外文關鍵詞:Interferon-gammaElectrochemical AnalysisPaper-based ElectrodeTungsten DisulfideAptamer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:17
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
結核病是全球性傳染病之一,在尚未開發的國家和發展中國家尤其普遍。根據世界衛生組織的資料統計,全世界約有三分之一的人感染了結核分枝桿菌。干擾素-γ(IFN-γ)是結核病的指標蛋白。結核菌素皮膚試驗(TST)和全血干擾素-γ試驗(IGRA)是目前檢測潛伏性結核菌感染(LTBI)的主要方法,但是上述方法昂貴、費時且需要專業人員進行操作。
據此,我們提出了一種基於紙質的電化學適體感測器,透過微分脈衝伏安法(DPV)進行IFN-γ檢測。電極的部分,使用Whatman濾紙作為工作電極的基材,代替一般的金屬和玻璃碳電極。由於紙基電極具有柔性結構,因此具有易於修改且製程成本較低的優點。透過塗佈石墨烯墨水和導電聚合物(PEDOT:PSS)以及修飾二硫化鎢在紙基電極的表面,形成複合電極,從而提高了導電率並提高了靈敏度。並進一步對導電紙基電極進行了表面功能化處理,以固定IFN-γ適體。並利用SEM和FTIR驗證紙基電極的表面修飾及化學鍵結。紙基適體感測器使用電化學三電極系統進行DPV檢測,並在緩衝液及血漿兩種環境檢測不同濃度的IFN-γ樣品。實驗結果顯示,通過分析不同濃度對應的電流,可以成功測量濃度3.125 pg.mL-1到1000 pg.mL-1的IFN-γ樣本,在血漿中的最低檢測濃度達2.9 pg.mL-1。本研究的石墨烯/ PEDOT:PSS/二硫化鎢修飾的基於導電紙的適體感測器可顯示出其潛力,可通過簡單、方便攜帶、快速、低成本且使用者方便操作的即時診斷工具,在資源有限的地區為結核病提供方便的檢查過程。

Tuberculosis is one of the global infectious diseases that are particularly prevalent in untapped and developing countries. According to the World Health Organization, about one-third of people worldwide are infected with mycobacteria . Interferon-gamma (IFN-γ) is an indicator protein for tuberculosis. Tuberculin skin test (TST) and whole blood interferon-gamma test (IGRA) are the main tools for detecting latent tuberculosis, but these methods are costly, time-consuming and needed to be operated by professionals .
According to this, we proposed a paper-based electrochemical aptasensor for IFN-γ detection by using electrochemical differential pulse voltammetry (DPV) analysis in this study. A Whatman filter paper was used as the substrate of the working electrode, replacing the conventional metal and glass carbon electrode. Because the paper-based electrode has a flexible structure, it has the advantages of easier modification and lower cost in the process. Graphene and conductive polymer (PEDOT:PSS) and WS2 were modified on the surface of the paper-based electrode through coating processes to form a composite electrode, thereby improving conductivity and increasing sensitivity. The conductive paper-based electrode was further processed the surface functionalization for the immobilization for IFN-γ aptamers. The morphology and surface modification of the paper-based electrode was characterized by using SEM and FTIR. The paper-based aptasensor was examined by using a three-electrode system with DPV scanning in different concentrations of IFN-γ samples. The experimental results show that by analyzing the current corresponding to different concentrations, IFN-γ samples with a concentration of 3.125 pg.mL-1-1000 pg.mL-1can be successfully measured. The lowest detection concentration in serum is 2.9 pg.mL-1.In conclusion, the graphene/PEDOT:PSS/WS2 modified conductive paper-based aptasensor may display its potential to provide a convenient inspection process with simple, portable, rapid, low-cost and user-friendly point-of-care diagnosis tool for Tuberculosis in source-limited area.
摘要 i
Abstract ii
致謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1-1. 前言 1
1-2. 研究動機與目的 2
1-3. 生物感測器 3
1-3-1. 生物感測器的發展及介紹 3
1-3-2. 生物感測器的種類 5
1-4. 丙型干擾素介紹 8
1-5. 結核菌感染檢測 8
第二章 文獻回顧 11
2-1. 電化學感測器理論 11
2-1-1. 電化學感測器原理 11
2-1-2. 電化學反應程序 12
2-1-3. 電化學槽與其電阻 13
2-1-4. 微分脈衝伏安法(Differential Pulse Voltammetry,DPV) 14
2-1-5. 循環伏安法 15
2-1-6. 阻抗分析法(EIS) 17
2-1-7. 阻抗圖譜與電路元件之關聯性 23
2-2. 核酸適體簡介 25
2-2-1. 適體 25
2-2-2. Aptamer 篩選系統–SELEX 27
2-2-3. 適體的應用 29
2-3. 表面分子辨識層技術 32
2-4. 石墨烯簡介 34
2-5. 導電高分子(PEDOT:PSS) 36
2-6. 紙基電極 38
2-7. 檢測IFN-γ之不同方法 39
2-8. 二硫化鎢(WS2) 40
第三章 實驗設計與流程 41
3-1. 實驗流程設計 41
3-2. 實驗設備與試劑 42
3-2-1. 實驗設備 42
3-2-2. 實驗試劑 44
3-3. 電化學容器的設計與改良 48
3-4. 紙基電極實驗 51
3-4-1. 紙基電極的導電聚合物修飾 51
3-4-2. 紙基電極的石墨烯修飾 51
3-4-3. 紙基電極二硫化鎢(WS2)修飾 53
3-5. 紙基電極的生物鍵結修飾 53
3-5-1. 適體版修飾 53
3-6. 電化學實驗流程 56
3-6-1. 電化學實驗步驟 56
第四章 實驗結果與討論 62
4-1. SEM 分析紙基電極的表面修飾 62
4-2. FTIR分析表面分子辨識層之化學鍵結 72
4-3. EIS及CV分析紙基電極的修飾 83
4-4. 不同濃度丙型干擾素(IFN-γ)之量測 86
4-4-1. Graphene/PEDOT:PSS/Methanol版電極檢測IFN-γ在緩衝液中 86
4-4-2. Graphene/PEDOT:PSS/WS2版電極檢測IFN-γ在緩衝液中 88
4-4-3. Graphene/PEDOT:PSS/WS2版電極檢測IFN-γ在血漿中 90
4-5. 紙基電極專一性實驗 92
4-6. 結果討論與分析 93
4-6-1. 檢測結果比較 93
第五章 結論與未來展望 95
5-1. 結論 95
5-2. 未來展望 96
參考文獻 97
縮寫表 105
[1]郭書辰, “丙型干擾素血液測驗於潛伏性結核病感染之角色,” no. 46–50, 2013.
[2]World Health Organization, “Tuberculosis,” 2020. .
[3]M.Cremer, “Über die Ursache der elektromotorischen Eigenschaften der Gewebe, zugleich ein Beitrag zur Lehre von polyphasischen Elektrolytketten,” Z. Biol., vol. 47, no. 29, pp. 562–608, 1906.
[4]吳宗正, 生物感測器. 九州出版社, 1996.
[5]趙振翔, 石墨烯及導電聚合物的複合式紙基電化學感測器應用於癌胚抗原檢測之研究. 2019.
[6]J.Wang, B.Tian, andK. R.Rogers, “Thick-Film Electrochemical Immunosensor Based on Stripping Potentiometric Detection of a Metal Ion Label,” Anal. Chem., vol. 70, no. 9, pp. 1682–1685, 1998, doi: 10.1021/ac971298n.
[7]Y.Arima, M.Toda, andH.Iwata, “Surface plasmon resonance in monitoring of complement activation on biomaterials,” Advanced Drug Delivery Reviews, vol. 63, no. 12. pp. 988–999, 2011, doi: 10.1016/j.addr.2011.06.018.
[8]L. C.Clark andC.Lyons, “Electrode Systems for Continuous Monitoring in Cardiovascular Surgery,” Ann. N. Y. Acad. Sci., vol. 102, no. 1, pp. 29–45, 1962, doi: 10.1111/j.1749-6632.1962.tb13623.x.
[9]胡啟章, 電化學原理與方法. 台北市: 五南圖書, 2007.
[10]D.Wang et al., “A reusable quartz crystal microbalance biosensor for highly specific detection of single-base DNA mutation,” Biosens. Bioelectron., vol. 48, pp. 276–280, 2013, doi: 10.1016/j.bios.2013.04.035.
[11]B.Xie, M.Mecklenburg, B.Danielsson, O.Öhman, andF.Winquist, “Microbiosensor based on an integrated thermopile,” Anal. Chim. Acta, vol. 299, no. 2, pp. 165–170, 1994, doi: 10.1016/0003-2670(94)00346-7.
[12]“干擾素伽瑪(interferon gamma, IFN-γ),” 2013. [Online]. Available: https://smallcollation.blogspot.com/2013/10/interferon-gamma-ifn.html#gsc.tab=0.
[13]J. H.Kim et al., “Detection of IFN-γ for latent tuberculosis diagnosis using an anodized aluminum oxide-based capacitive sensor,” Biosens. Bioelectron., vol. 51, pp. 366–370, 2014, doi: 10.1016/j.bios.2013.08.013.
[14]C.Lange, B.Hellmich, M.Ernst, andS.Ehlers, “Rapid immunodiagnosis of tuberculosis in a woman receiving anti-TNF therapy,” Nat. Clin. Pract. Rheumatol., vol. 3, no. 9, pp. 528–534, 2007, doi: 10.1038/ncprheum0571.
[15]M.Pai, L. W.Riley, andJ. M.Colford, “Interferon-γ assays in the immunodiagnosis of tuberculosis: A systematic review,” Lancet Infectious Diseases, vol. 4, no. 12. pp. 761–776, 2004, doi: 10.1016/S1473-3099(04)01206-X.
[16]李冠緯, 整合導電連接分子與電化學阻抗分析儀以檢測丙型干擾素之 研究. 臺灣大學, 2014.
[17]“差分脈衝伏安法.” [Online]. Available: https://baike.baidu.com/item/差分脉冲伏安法/16763576?fr=aladdin.
[18]J.Wu, X. Z.Yuan, andH.Wang, “Cyclic voltammetry,” PEM Fuel Cell Diagnostic Tools, 2011. [Online]. Available: https://en.wikipedia.org/wiki/Cyclic_voltammetry.
[19]“創世紀季刊,” 2014.
[20]李建武, 生物化學實驗原理和方法. 1997.
[21]H.Wang andL.Shiyou, “Immobilization of enzymes and cells,” Chem. Bull. / Huaxue Tongbao, no. 2, pp. 22–27, 1997, doi: 10.1385/0896033864.
[22]K. S.Novoselov et al., “Electric field in atomically thin carbon films,” Science (80-. )., vol. 306, no. 5696, pp. 666–669, 2004, doi: 10.1126/science.1102896.
[23]蘇清源, “石墨烯量產技術與產業應用.” [Online]. Available: http://www.pida.org.tw/optolink/optolink_pdf/1021110826.pdf.
[24]S.Mukherjee et al., “Solution-processed poly(3,4-ethylenedioxythiophene) thin films as transparent conductors: Effect of p-toluenesulfonic acid in dimethyl sulfoxide,” ACS Appl. Mater. Interfaces, vol. 6, no. 20, pp. 17792–17803, 2014, doi: 10.1021/am504150n.
[25]黃桂武, 軟性印製透明導電高分子材料技術發展. 光連雙月刊, 2012.
[26]H. Y.Wei, J. H.Huang, C. Y.Hsu, F. C.Chang, K. C.Ho, andC. W.Chu, “Organic solar cells featuring nanobowl structures,” Energy Environ. Sci., vol. 6, no. 4, pp. 1192–1198, 2013, doi: 10.1039/c3ee24128a.
[27]L.Groenendaal, F.Jonas, D.Freitag, H.Pielartzik, andJ. R.Reynolds, “Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future,” Adv. Mater., vol. 12, no. 7, pp. 481–494, 2000, doi: 10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C.
[28]S.Kirchmeyer andK.Reuter, “Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene),” J. Mater. Chem., vol. 15, no. 21, pp. 2077–2088, 2005, doi: 10.1039/b417803n.
[29]“PEDOT:PSS,” 2019. [Online]. Available: https://en.wikipedia.org/wiki/PEDOT:PSS.
[30]D. A.Mengistie, M. A.Ibrahem, P. C.Wang, andC. W.Chu, “Highly conductive PEDOT:PSS treated with formic acid for ITO-free polymer solar cells,” ACS Appl. Mater. Interfaces, vol. 6, no. 4, pp. 2292–2299, 2014, doi: 10.1021/am405024d.
[31]X.Crispin et al., “Conductivity, morphology, interfacial chemistry, and stability of poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate): A photoelectron spectroscopy study,” J. Polym. Sci. Part B Polym. Phys., vol. 41, no. 21, pp. 2561–2583, 2003, doi: 10.1002/polb.10659.
[32]S.Kumar et al., “Biofunctionalized Nanostructured Zirconia for Biomedical Application: A Smart Approach for Oral Cancer Detection,” Adv. Sci., vol. 2, no. 8, 2015, doi: 10.1002/advs.201500048.
[33]H.Zeng et al., “A carcinoembryonic antigen optoelectronic immunosensor based on thiol-derivative-nanogold labeled anti-CEA antibody nanomaterial and gold modified ITO,” Sensors Actuators, B Chem., vol. 221, pp. 22–27, 2015, doi: 10.1016/j.snb.2015.06.062.
[34]Z.Liu andZ.Ma, “Fabrication of an ultrasensitive electrochemical immunosensor for CEA based on conducting long-chain polythiols,” Biosens. Bioelectron., vol. 46, pp. 1–7, 2013, doi: 10.1016/j.bios.2013.02.016.
[35]K. J.Huang, D. J.Niu, W. Z.Xie, andW.Wang, “A disposable electrochemical immunosensor for carcinoembryonic antigen based on nano-Au/multi-walled carbon nanotubes-chitosans nanocomposite film modified glassy carbon electrode,” Anal. Chim. Acta, vol. 659, no. 1–2, pp. 102–108, 2010, doi: 10.1016/j.aca.2009.11.023.
[36]E. W.Nery andL. T.Kubota, “Sensing approaches on paper-based devices: A review,” Analytical and Bioanalytical Chemistry, vol. 405, no. 24. pp. 7573–7595, 2013, doi: 10.1007/s00216-013-6911-4.
[37]C.Desmet, C. A.Marquette, L. J.Blum, andB.Doumèche, “Paper electrodes for bioelectrochemistry: Biosensors and biofuel cells,” Biosens. Bioelectron., vol. 76, pp. 145–163, 2016, doi: 10.1016/j.bios.2015.06.052.
[38]B. D.Malhotra, S.Kumar, andC. M.Pandey, “Nanomaterials based biosensors for cancer biomarker detection,” in Journal of Physics: Conference Series, 2016, vol. 704, no. 1, doi: 10.1088/1742-6596/704/1/012011.
[39]李忠翰, 雙功能核酸適體辨識元件設計於表面電漿子共振生物感測器之應用: 以丙型干擾素檢驗於結核感染診斷為例. 臺灣大學, 2013.
[40]劉孟緯, 整合電化學及表面電漿子共振之系統研究:以ATP生物連接子進行丙型干擾素檢測之驗證. 臺灣大學, 2016.
[41]R.Tenne, L.Margulis, M.Genut, andG.Hodes, “Polyhedral and cylindrical structures of tungsten disulphide,” Nature, vol. 360, no. 6403, pp. 444–446, 1992, doi: 10.1038/360444a0.
[42]P. K.Panigrahi andA.Pathak, “Microwave-assisted synthesis of WS2 nanowires through tetrathiotungstate precursors,” Sci. Technol. Adv. Mater., vol. 9, no. 4, 2008, doi: 10.1088/1468-6996/9/4/045008.
[43]G.Lalwani et al., “Tungsten disulfide nanotubes reinforced biodegradable polymers for bone tissue engineering,” Acta Biomater., vol. 9, no. 9, pp. 8365–8373, 2013, doi: 10.1016/j.actbio.2013.05.018.
[44]B. . et al.Zohar.E, “The Mechanical and Tribological Properties of Epoxy Nanocomposites with WS2 Nanotubes,” pp. 53–65.
[45]C. S.Reddy, A.Zak, andE.Zussman, “WS2 nanotubes embedded in PMMA nanofibers as energy absorptive material,” J. Mater. Chem., vol. 21, no. 40, pp. 16086–16093, 2011, doi: 10.1039/c1jm12700d.
[46]Iddo Genuth, “Nano-Armor: Protecting the Soldiers of Tomorrow,” 2005. .
[47]P.Bertasius, M.Shneider, J.Macutkevic, V.Samulionis, J.Banys, andA.Zak, “Dielectric properties of epoxy-matrix composites with tungsten disulfide nanotubes,” J. Nanomater., vol. 2019, 2019, doi: 10.1155/2019/5761439.
[48]H.Sade andJ. P.Lellouche, “Functionalization of Tungsten Disulfide Nanotubes with a Conformal Humin-Like Shell,” Adv. Mater. Interfaces, vol. 3, no. 20, 2016, doi: 10.1002/admi.201600307.
[49]S.Farid et al., “Detection of Interferon gamma using graphene and aptamer based FET-like electrochemical biosensor,” Biosens. Bioelectron., vol. 71, pp. 294–299, 2015, doi: 10.1016/j.bios.2015.04.047.
[50]N.Tuleuova, C. N.Jones, J.Yan, E.Ramanculov, Y.Yokobayashi, andA.Revzin, “Development of an aptamer beacon for detection of Interferon-Gamma,” Anal. Chem., vol. 82, no. 5, pp. 1851–1857, 2010, doi: 10.1021/ac9025237.
[51]S.Kumar, S.Kumar, C. M.Pandey, andB. D.Malhotra, “Conducting paper based sensor for cancer biomarker detection,” in Journal of Physics: Conference Series, 2016, vol. 704, no. 1, doi: 10.1088/1742-6596/704/1/012010.
[52]V.Mani, B.V.Chikkaveeraiah, V.Patel, J. S.Gutkind, andJ. F.Rusling, “Ultrasensitive immunosensor for cancer biomarker proteins using gold nanoparticle film electrodes and multienzyme-particle amplification,” ACS Nano, vol. 3, no. 3, pp. 585–594, 2009, doi: 10.1021/nn800863w.
[53]P. S.Jensen et al., “Gold nanoparticle assisted assembly of a heme protein for enhancement of long-range interfacial electron transfer,” J. Phys. Chem. C, vol. 111, no. 16, pp. 6124–6132, 2007, doi: 10.1021/jp068453z.
[54]H.Shu, W.Wen, H.Xiong, X.Zhang, andS.Wang, “Novel electrochemical aptamer biosensor based on gold nanoparticles signal amplification for the detection of carcinoembryonic antigen,” Electrochem. commun., vol. 37, pp. 15–19, 2013, doi: 10.1016/j.elecom.2013.09.018.
[55]A.Singh, S.Park, andH.Yang, “Glucose-oxidase label-based redox cycling for an incubation period-free electrochemical immunosensor,” Anal. Chem., vol. 85, no. 10, pp. 4863–4868, 2013, doi: 10.1021/ac400573j.
[56]G.Yang, L.Li, R. K.Rana, andJ. J.Zhu, “Assembled gold nanoparticles on nitrogen-doped graphene for ultrasensitive electrochemical detection of matrix metalloproteinase-2,” Carbon N. Y., vol. 61, pp. 357–366, 2013, doi: 10.1016/j.carbon.2013.05.016.
[57]D.Lin, J.Wu, H.Ju, andF.Yan, “Nanogold/mesoporous carbon foam-mediated silver enhancement for graphene-enhanced electrochemical immunosensing of carcinoembryonic antigen,” Biosens. Bioelectron., vol. 52, pp. 153–158, 2014, doi: 10.1016/j.bios.2013.08.051.
[58]N.Garg et al., “Robust gold nanoparticles stabilized by trithiol for application in chemiresistive sensors,” Nanotechnology, vol. 21, no. 40, 2010, doi: 10.1088/0957-4484/21/40/405501.
[59]K.Saha, S. S.Agasti, C.Kim, X.Li, andV. M.Rotello, “Gold nanoparticles in chemical and biological sensing,” Chemical Reviews, vol. 112, no. 5. pp. 2739–2779, 2012, doi: 10.1021/cr2001178.
[60]D. R.Kauffman andA.Star, “Carbon nanotube gas and vapor sensors,” Angewandte Chemie - International Edition, vol. 47, no. 35. pp. 6550–6570, 2008, doi: 10.1002/anie.200704488.
[61]C.Sriprachuabwong et al., “Inkjet-printed graphene-PEDOT:PSS modified screen printed carbon electrode for biochemical sensing,” J. Mater. Chem., vol. 22, no. 12, pp. 5478–5485, 2012, doi: 10.1039/c2jm14005e.
[62]T. T.Tung, M.Castro, T. Y.Kim, K. S.Suh, andJ. F.Feller, “Graphene quantum resistive sensing skin for the detection of alteration biomarkers,” J. Mater. Chem., vol. 22, no. 40, pp. 21754–21766, 2012, doi: 10.1039/c2jm34806c.
[63]“Randles circuit,” 2019. [Online]. Available: https://en.wikipedia.org/wiki/Randles_circuit.
[64]“Typical Infrared Absorption Frequencies,” 2019. [Online]. Available: https://staff.aub.edu.lb/~tg02/IR.pdf.
[65]A. D.McNaught andA.Wilkinson, IUPAC Compendium of Chemical Terminology. 2009.
[66]CLSI, “Evaluation of Detection Capability for Clinical Laboratory Measurement Procedures—Second Edition,” 2012.
[67]D. A.Armbruster andT.Pry, “Limit of blank, limit of detection and limit of quantitation.,” Clin. Biochem. Rev., vol. 29 Suppl 1, pp. S49-52, 2008.
[68]G. L.Long andJ. D.Winefordner, “Limit of Detection: A Closer Look at the IUPAC Definition,” Anal. Chem., vol. 55, no. 7, pp. 712A-724A, 1983, doi: 10.1021/ac00258a001.
[69]G.Zhao andS. B.Chen, “Clouding and phase behavior of nonionic surfactants in hydrophobically modified hydroxyethyl cellulose solutions,” Langmuir, vol. 22, no. 22. pp. 9129–9134, 2006, doi: 10.1021/la0608056.
[70]A.Shrivastava andV.Gupta, “Methods for the determination of limit of detection and limit of quantitation of the analytical methods,” Chronicles Young Sci., vol. 2, no. 1, p. 21, 2011, doi: 10.4103/2229-5186.79345.
[71]J.Mocak, A. M.Bond, S.Mitchell, G.Scollary, andA. M.Bond, “A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: Application to voltammetric and stripping techniques,” Pure Appl. Chem., vol. 69, no. 2, pp. 297–328, 1997, doi: 10.1351/pac199769020297.
[72]“留學停看聽 - (2)結核菌檢驗及判讀方式,” 2019. [Online]. Available: http://travelmedicine.org.tw/information/content.asp?ID=129.
[73]“潛伏結核感染之診斷及治療,” 2017. .
[74]“丙型干擾素檢測試劑盒,” 太鼎生物科技有限公司. .
電子全文 電子全文(網際網路公開日期:20220901)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔