(3.92.96.236) 您好!臺灣時間:2021/05/09 01:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳昱鳴
研究生(外文):CHEN, YU-MING
論文名稱:以聚焦微流體裝置進行合成導電生物絲之研究
論文名稱(外文):Conductive bio-silk synthesis by using a flow-focusing microfluidic device
指導教授:顏毅廣
指導教授(外文):YEN, YI-KUANG
口試委員:顏毅廣楊正昌吳亘承李文亞蔣雅郁
口試委員(外文):YEN, YI-KUANGYANG, JEN-CHANGWU, HSUAN-CHENLEE, WEN-YACHIANG, YA-YU
口試日期:2020-07-20
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:72
中文關鍵詞:生物導電絲微流體裝置蠶絲蛋白海藻酸鈉石墨烯
外文關鍵詞:Conductive bio-silkMicrofluidic deviceRegenerated silk fibroinAlginateGraphene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:60
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
生物導電絲,是一種生物化學導電纖維,由生物分子與導電聚合物或顆粒混合而成。由於現今穿戴電子產品蓬勃發展,例如智慧手錶和智能服飾等等,因此導電生物絲的這項研究是備受關注的。
本研究使用微流體裝置進行濕式紡絲,微流道設計上是採用兩道夾流設計,藉由夾流的方式使紡絲溶液在流道匯流處能達到緊縮的效果,進而達到仿生的目的,在實驗設計上我們將絲心蛋白(RSF)混入特定比例的石墨烯(Graphene)作為紡絲原液,利用海藻酸鈉具有水凝膠的獨特性質,通過海藻酸鈉水溶液在與蠶絲蛋白所附有的二價鈣金屬離子共存的作用下發生離子置換,產生交聯反應,形成具有三維網狀結構的水膠,紡出含有蠶絲蛋白以及石墨烯成分的合成絲纖維,藉此生產出具有導電性及高強度的導電生物絲。相較於傳統的紡絲方法,微流道所使用的材料為PDMS,其有著生物相容性高的優勢,適合用於生物紡絲並且能夠處理單一纖維,在設計及製造上簡單、成本低且快速,不需使用大型設備且便於攜帶及操作簡單等優點。微流道在製程方面是使用光固化3D列印機印製出微流道母模,經由翻模的方式將PDMS翻模而成。濕紡實驗中我們利用微流體控制系統操控溶液,藉此控制及計算出微流道內液體的流量和流速,且能夠紡出具有均勻直徑的絲纖維。
在實驗結果部分,我們成功地紡出及拍攝出含有石墨烯在內的合成絲纖維,且經過比較後發現含有10 wt%石墨烯比未含的絲纖維在強度上提高了1.2倍,而在絲纖維電性方面,石墨烯含量在25 wt%時的導電率可達2.5×10-2 S/m,這說明石墨烯的導電性質確實是有反應在絲纖維上,也證實本研究之微流體紡絲技術是具有它的優勢和潛在價值。

In recent years, wearable electronic products have prospered and the research on conductive textile fiber has attracted much attention. Conductive fibers which spun from conductive composites mixing with biomolecules have great potential to be applied to wearable electronic devices or textile.
In this study, a microfluidic device was used for wet spinning of conductive biofibers. The design of the microfluidic channel adopts a two-channel entrainment design. Through the entrainment method, the spinning solution can achieve a compaction effect at the confluence of the flow channel, thereby achieving a bionic purpose. In the experimental design, we mixed silk fibroin (RSF) into a specific ratio of graphene as the spinning stock solution, and used the unique properties of sodium alginate as a hydrogel. Under the coexistence of the attached divalent calcium metal ions, which ion replacement occurs, resulting in across-linking reaction to form a hydrogel with a three-dimensional network structure. Spinning synthetic silk fibers containing silk protein and graphene, thereby producing conductive and high-strength conductive bio-silk. Compared with the traditional spinning method, the microfluidic device has the advantage of high biocompatibility, and is suitable for bio-spinning and can handle single fibers. It is simple in design and manufacturing, low in cost and fast, does not require large equipment, is easy to carry, and is easy to operate. In terms of manufacturing process, the micro-runner uses a light-curing 3D printer to print out a micro-runner master mold, and then re-mold the PDMS through mold reversal. In the wet spinning experiment, we use a microfluidic control system to manipulate the solution, thereby controlling and calculating the flow rate and flow rate of the liquid in the microchannel, and can spin silk fibers with uniform diameters.
In the experimental results, we successfully spun and photographed synthetic silk fibers containing graphene. After comparison, we found that the strength of 10 wt% graphene was 1.2 times higher than that of uncontained silk fibers. In terms of the electrical properties of silk fibers, the conductivity of graphene content at 25 wt% can reach 2.5×10-2 S/m, which shows that the conductive properties of graphene are indeed reflected on silk fibers, which also confirms the insignificance of this study. Fluid spinning technology has its advantages and potential value.

中文摘要 i
英文摘要 ii
誌謝 iv
目錄 vi
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1-1. 前言 1
1-2. 研究動機與目的 2
1-3. 論文大綱 3
第二章 文獻回顧 4
2-1. 微機電系統 4
2-1-1. 微機電簡介 4
2-1-2. 微流體晶片 5
2-2. 濕式紡絲法 9
2-3. 聚二甲基矽氧烷(PDMS) 10
2-4. 蠶絲蛋白(SF) 12
2-5. 海藻酸鈉 14
2-5-1. 海藻酸鈉簡介 14
2-5-2. 海藻酸鈉特性 16
2-5-3. 海藻酸鈉之應用 17
2-6. 石墨烯簡介 20
第三章 實驗設計與流程 22
3-1. 實驗設計 22
3-2. 實驗設備與材料 23
3-2-1. 實驗設備 23
3-2-2. 實驗材料 26
3-3. 微流道製作流程 28
3-3-1. 微流道母模設計 29
3-3-2. 光固化3D列印 30
3-3-3. 後處理 31
3-3-4. PDMS翻模法 33
3-4. 蠶絲蛋白製備流程 37
3-5. 紡絲溶液調配 42
3-5-1. 紡絲原液 42
3-5-2. 海藻酸鈉水溶液 43
3-6. 濕紡實驗流程 44
3-7. 量測方法 49
3-7-1. 電子式拉力試驗機 49
3-7-2. 四點探針量測 52
第四章 實驗結果與討論 53
4-1. SEM分析絲纖維結構 53
4-2. 絲纖維之拉伸試驗 61
4-3. 導電絲電性之量測 65
第五章 結論與未來展望 66
5-1. 結論 66
5-2. 未來與展望 67
第六章 參考文獻 68

[1]呂珮如, “全球智慧穿戴裝置市場分析,” 2019. [Online]. Available: http://www.twcloud.org.tw/files/file_pool/1/0j211517917521474259/2019.07.
[2]Y.Liu, J.Ren, andS.Ling, “Bioinspired and biomimetic silk spinning,” Compos. Commun., vol. 13, pp. 85–96, 2019.
[3]J.Luo, Y.Zhang, Y.Huang, H.Shao, andX.Hu, “A bio-inspired microfluidic concentrator for regenerated silk fibroin solution,” Sensors Actuators, B Chem., vol. 162, no. 1, pp. 435–440, 2012.
[4]R.Feynman, “Infinitesimal Machinery,” J. Microelectromechanical Syst., vol. 2, no. 1, pp. 4–14, 1993.
[5]R. P.Feynman, “There’s plenty of room at the bottom,” J. Microelectromechanical Syst., vol. 1, no. 1, pp. 60–66, 1992.
[6]A. J. G.Hey, “Feynman and computation: Exploring the limits of computers,” Feynman Comput. Explor. Limits Comput., pp. 1–438, 2018.
[7]R.Popovtzer, T.Neufeld, E. z.Ron, J.Rishpon, andY.Shacham-Diamand, “Electrochemical detection of biological reactions using a novel nano-bio-chip array,” Sensors Actuators, B Chem., vol. 119, no. 2, pp. 664–672, 2006.
[8]馬立人.蔣中華, 《生物晶片》第二版. 2003.
[9]Y.Murakami, T.Endo, S.Yamamura, N.Nagatani, Y.Takamura, andE.Tamiya, “On-chip micro-flow polystyrene bead-based immunoassay for quantitative detection of tacrolimus (FK506),” Anal. Biochem., vol. 334, no. 1, pp. 111–116, 2004.
[10]S.Ling, D. L.Kaplan, andM. J.Buehler, “Nanofibrils in nature and materials engineering,” Nat. Rev. Mater., vol. 3, 2018.
[11]M. E.Kinahan et al., “Tunable silk: using microfluidics to fabricate silk fibers with controllable properties,” Biomacromolecules, vol. 12, no. 5, pp. 1504–1511, 2011.
[12]K. M. O.Håkansson et al., “Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments,” Nat. Commun., vol. 5, no. 1, pp. 1–10, 2014.
[13]Q.Peng et al., “Recombinant spider silk from aqueous solutions via a bio-inspired microfluidic chip,” Sci. Rep., vol. 6, 2016.
[14]X.Hu et al., “Structure-tunable graphene oxide fibers via microfluidic spinning route for multifunctional textile,” Carbon N. Y., vol. 152, pp. 106–113, 2019.
[15]M.Meyer, H.Baltzer, andK.Schwikal, “Collagen fibres by thermoplastic and wet spinning,” Mater. Sci. Eng. C, vol. 30, no. 8, pp. 1266–1271, 2010.
[16]I. C.Um, C. S.Ki, H. Y.Kweon, K. G.Lee, D. W.Ihm, andY. H.Park, “Wet spinning of silk polymer: II. Effect of drawing on the structural characteristics and properties of filament,” Int. J. Biol. Macromol., vol. 34, no. 1–2, pp. 107–119, 2004.
[17]R. L.Reis, N. M.Neves, J. F.Mano, M. E.Gomes, A. P.Marques, andH. S.Azevedo, Natural-based polymers for biomedical applications. 2008.
[18]D.Puppi andF.Chiellini, “Wet-spinning of biomedical polymers: from single-fibre production to additive manufacturing of three-dimensional scaffolds,” Polymer International, vol. 66, no. 12. pp. 1690–1696, 2017.
[19]黃明宏, “聚二甲基矽氧烷應用於可撓液晶顯示器的研究,” 2009.
[20]崔家軒, “應用於酵素生理檢測之親水微流道試片之製作研究,” 2011.
[21]Y.Hongbin, Z.Guangya, C. F.Siong, W.Shouhua, andL.Feiwen, “Novel polydimethylsiloxane (PDMS) based microchannel fabrication method for lab-on-a-chip application,” Sensors Actuators, B Chem., vol. 137, no. 2, pp. 754–761, 2009.
[22]D.Armani, C.Liu, andN.Aluru, “Re-configurable fluid circuits by PDMS elastomer micromachining,” in Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), 1999, pp. 222–227.
[23]周麗霞,張雨青,周珍禎王元淨, “蠶絲絲膠蛋白的純化及其體外活性,” 絲綢月刊, pp. 18–22, 2010.
[24]M. K.Yoo, H. Y.Kweon, K. G.Lee, H. C.Lee, andC. S.Cho, “Preparation of semi-interpenetrating polymer networks composed of silk fibroin and poloxamer macromer,” Int. J. Biol. Macromol., vol. 34, no. 4, pp. 263–270, 2004.
[25]D.Thirupathamma, G.Savithri, andK.Kavya Sudha, “Silk for biomedical applications,” Res. J. Pharm. Biol. Chem. Sci., vol. 4, no. 2, pp. 657–663, 2013.
[26]G. H.Altman et al., “Silk-based biomaterials,” Biomaterials, vol. 24, no. 3, pp. 401–416, 2003.
[27]Y.Tamada, “Sulfation of silk fibroin by chlorosulfonic acid and the anticoagulant activity,” Biomaterials, vol. 25, no. 3, pp. 377–383, 2004.
[28]王宏昕李敏, “絲素蛋白作為組織工程生物材料的研究進展,” 中國修復重建外科雜誌, 2008.
[29]A.Blandino, M.Macías, andD.Cantero, “Formation of calcium alginate gel capsules: Influence of sodium alginate and CaCl2 concentration on gelation kinetics,” J. Biosci. Bioeng., vol. 88, no. 6, pp. 686–689, 1999.
[30]H. L.Ma, S. C.Hung, S. Y.Lin, Y. L.Chen, andW. H.Lo, “Chondrogenesis of human mesenchymal stem cells encapsulated in alginate beads,” J. Biomed. Mater. Res. - Part A, vol. 64, no. 2, pp. 273–281, 2003.
[31]K. Y.Lee andD. J.Mooney, Alginate: Properties and biomedical applications, vol. 37, no. 1. 2012.
[32]S. N.Pawar andK. J.Edgar, “Alginate derivatization: A review of chemistry, properties and applications,” Biomaterials, vol. 33, no. 11. pp. 3279–3305, 2012.
[33]K. Y.Lee andS. H.Yuk, “Polymeric protein delivery systems,” Progress in Polymer Science (Oxford), vol. 32, no. 7. pp. 669–697, 2007.
[34]K. M.Zia, F.Zia, M.Zuber, S.Rehman, andM. N.Ahmad, “Alginate based polyurethanes: A review of recent advances and perspective,” International Journal of Biological Macromolecules, vol. 79. pp. 377–387, 2015.
[35]K. I.Draget, O.Smidsrød, andG.Skjåk‐Bræk, “Alginates from Algae,” in Biopolymers Online, 2002.
[36]W.Sabra, A. P.Zeng, andW. D.Deckwer, “Bacterial alginate: Physiology, product quality and process aspects,” Applied Microbiology and Biotechnology, vol. 56, no. 3–4. pp. 315–325, 2001.
[37]M. A.LeRoux, F.Guilak, andL. A.Setton, “Compressive and shear properties of alginate gel: Effects of sodium ions and alginate concentration,” J. Biomed. Mater. Res., vol. 47, no. 1, pp. 46–53, 1999.
[38]S. N.Pawar andK. J.Edgar, “Chemical modification of alginates in organic solvent systems,” Biomacromolecules, vol. 12, no. 11, pp. 4095–4103, 2011.
[39]V. A. E.King andR. R.Zall, “Ethanol Fermentation of Whey using Polyacrylamide and Kappa-Carrageenan Entrapped Yeasts,” J. Gen. Appl. Microbiol., vol. 29, no. 5, pp. 379–393, 1983.
[40]C. M.Ott andD. F.Day, Bacterial alginate: An alternative industrial polymer, vol. 3, no. 12. 1995.
[41]A.Linker andR. S.Jones, “A polysaccharide resembling alginic acid from a Pseudomonas micro-organism [18],” Nature, vol. 204, no. 4954. pp. 187–188, 1964.
[42]詹宜敏、陳崇裕, “海藻酸鈉包覆維生素 E 之製備與評估,” 2006.
[43]李其祥、肖志方、易德蓮、伍林、向東棟, “海藻酸鹽水凝膠研究進展,” 2009.
[44]T. A.Davis, B.Volesky, andA.Mucci, “A review of the biochemistry of heavy metal biosorption by brown algae,” Water Research, vol. 37, no. 18. pp. 4311–4330, 2003.
[45]陳佳其, “胃食道逆流的藥物治療,” 2012.
[46]秦益民, “海藻酸纖維在醫用敷料中的應用,” 2003.
[47]紡織產業發展推動辦公室, “紡織品應用材料,” 2010. [Online]. Available: http://www.docin.com/p-488397820.html.
[48]C.Wiegand, T.Heinze, andU. C.Hipler, “Comparative in vitro study on cytotoxicity, antimicrobial activity, and binding capacity for pathophysiological factors in chronic wounds of alginate and silver-containing alginate,” Wound Repair Regen., vol. 17, no. 4, pp. 511–521, 2009.
[49]E.Barka, D. K.Papayannis, T. M.Kolettis, andS.Agathopoulos, “Optimization of Ca2+ content in alginate hydrogel injected in myocardium,” J. Biomed. Mater. Res. Part B Appl. Biomater., vol. 107, no. 2, pp. 223–231, 2019.
[50]K. S.Novoselov et al., “Electric field in atomically thin carbon films,” Science (80-. )., vol. 306, no. 5696, pp. 666–669, 2004.
[51]蘇清源, “石墨烯量產技術與產業應用,” 光連:光電產業與技術情報, pp. 61–71, 2013.
[52]Y.Zhang et al., “Artificial silk materials with enhanced mechanical properties and controllable structures,” International Journal of the Society of Material Engineering for Resources, vol. 20, no. 1. pp. 1–5, 2014.
[53]B.Hoffmann, C.Gruat-Henry, P.Mulinti, L.Jiang, B. D.Brooks, andA. E.Brooks, “Using hydrodynamic focusing to predictably alter the diameter of synthetic silk fibers,” PLoS One, vol. 13, no. 4, 2018.


電子全文 電子全文(網際網路公開日期:20221013)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔