|
[1]台灣失智症協會. http://www.tada2002.org.tw/About/IsntDementia [2]衛生福利部. 失智症診療手冊. https://www.mohw.gov.tw/dl-27189-8993c3ad-0f47-45e0-a602-6a4362faae9a.html [3]B. Dubois, H. H. Feldman, C. Jacova, S. T. DeKosky, P. Barberger-Gateau, J. Cummings, A. Delacourte, D. Galasko, S. Gauthier, G. Jicha, K. Meguro, J. O'Brien, F. Pasquier, P. Robert, M. Rossor, S. Salloway, Y. Stern, P. J. Visser, and P. Scheltens, “Research criteria for the diagnosis of alzheimer's disease: Revising the NINCDS–ADRDA criteria,” The Lancet Neurology, vol. 6, no. 8, pp. 734-746, 2007. [4]Alzheimer's Association, “2016 Alzheimer's disease facts and figures,” Alzheimer's & Dementia, vol. 12, no. 4, pp. 459-509, 2016. [5]American Psychiatric Association, American Psychiatric Association. DSM-5 Task Force., Diagnostic and statistical manual of mental disorders: DSM-5. 5th ed. American Psychiatric Association: Washington, D.C., 2013. [6]M. F. Folstein, S. E. Folstein, and P. R. McHugh, ““Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician,” Journal of psychiatric research, vol. 12, no. 3, pp. 189-198, 1975. [7]J. Morris, “The clinical dementia rating (CDR): Current version and scoring rules,” Neurology, vol. 43, no. 11, pp. 2412-2412, 1993. [8]J. H. Roh, M. H. Park, D. Ko, K. Park, D. Lee, C. Han, S. A. Jo, K. Yang, and K. Jung, “Region and frequency specific changes of spectral power in alzheimer’s disease and mild cognitive impairment,” Clinical Neurophysiology, vol. 122, no. 11, pp. 2169-2176, 2011. [9]R. Wang, J. Wang, H. Yu, X. Wei, C. Yang, and B. Deng, “Power spectral density and coherence analysis of alzheimer’s EEG,” Cognitive Neurodynamics, vol. 9, no. 3, pp. 291-304, 2015. [10]V. Jelic, M. Shigeta, P. Julin, O. Almkvist, B. Winblad, and L. Wahlund, “Quantitative electroencephalography power and coherence in Alzheimer's disease and mild cognitive impairment,” Dementia and Geriatric Cognitive Disorders, vol. 7, no. 6, pp. 314-323, 1996. [11]V. Jelic, S. Johansson, O. Almkvist, M. Shigeta, P. Julin, A. Nordberg, B. Winblad, and L. Wahlund, “Quantitative electroencephalography in mild cognitive impairment: Longitudinal changes and possible prediction of Alzheimer’s disease,” Neurobiology of aging, vol. 21, no. 4, pp. 533-540, 2000. [12]P. M. Rodrigues, B. C. Bispo, D. R. Freitas, J. P. Teixeira, and A. Carreres, “Evaluation of EEG spectral features in Alzheimer disease discrimination,” Proc. 21st Eur. Signal Process. Conf., pp. 1-5, Sep. 2013. [13]E. Neto, F. Biessmann, H. Aurlien, H. Nordby, and T. Eichele, “Regularized linear discriminant analysis of EEG features in dementia patients,” Frontiers in Aging Neuroscience, vol. 8, no. 30, 2016. [14]J. Poza, C. Gómez, M. García, M. A. Tola-Arribas, A. Carreres, M. Cano, and R. Hornero, “Spatio-temporal fluctuations of neural dynamics in mild cognitive impairment and Alzheimer's disease,” Current Alzheimer Research, vol. 14, no. 9, pp. 924-936, 2017. [15]C. S. Musaeus, K. Engedal, P. Høgh, V. Jelic, M. Mørup, M. Naik, A. Oeksengaard, J. Snaedal, L. Wahlund, G. Waldemar, and B. B. Andersen, “EEG theta power is an early marker of cognitive decline in dementia due to Alzheimer’s disease,” Journal of Alzheimer's Disease, vol. 64, no. 4, pp. 1359-1371, 2018. [16]N. N. Kulkarni and V. K. Bairagi, “Extracting salient features for EEG-based diagnosis of Alzheimer's disease using support vector machine classifier,” IETE Journal of Research, vol. 63, no. 1, pp. 11-22, 2017. [17]N. Sharma, M. H. Kolekar, K. Jha, and Y. Kumar, “EEG and cognitive biomarkers based mild cognitive impairment diagnosis,” IRBM, vol. 40, no. 2, pp. 113-121, 2019. [18]C. Ieracitano, N. Mammone, A. Bramanti, A. Hussain, and F. C. Morabito, “A convolutional neural network approach for classification of dementia stages based on 2D-spectral representation of EEG recordings,” Neurocomputing, vol. 323, pp. 96-107, 2019. [19]B. Güntekin, L. Hanoğlu, T. Aktürk, E. Fide, D. D. Emek‐Savaş, E. Ruşen, ... and G. G. Yener, “Impairment in recognition of emotional facial expressions in Alzheimer's disease is represented by EEG theta and alpha responses,” Psychophysiology, vol. 56, no. 11, e13434, 2019. [20]F. M. Smits, C. Porcaro, C. Cottone, A. Cancelli, P. M. Rossini, and F. Tecchio, “Electroencephalographic fractal dimension in healthy ageing and Alzheimer’s disease,” PloS one, vol. 11, no. 2, e0149587, 2016. [21]Y. H. Liu, S. Huang, and Y. D. Huang, “Motor imagery EEG classification for patients with amyotrophic lateral sclerosis using fractal dimension and Fisher’s criterion-based channel selection,” Sensore-Basel, vol. 17, no. 7, 2017. [22]A. Delorme, S. Makeig, “EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis,” J Neurosci Methods, vol. 134, iss. 1, pp. 9-12, 2004 [23]C. F. Tsai, W. J. Lee, S. J. Wang, B. C. Shia, Z. Nasreddine, and J. L. Fuh, “Psychometrics of the montreal cognitive assessment (MoCA) and its subscales: Validation of the taiwanese version of the MoCA and an item response theory analysis,” International Psychogeriatrics, vol. 24, no. 4, pp. 651-658, 2012. [24]P. M. Rossini, M. Buscema, M. Capriotti, E. Grossi, G. Rodriguez, C. Del Percio, and C. Babiloni, “Is it possible to automatically distinguish resting EEG data of normal elderly vs. mild cognitive impairment subjects with high degree of accuracy?” Clinical Neurophysiology, vol. 119, no. 7, pp. 1534-1545, 2008.
|