跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2025/01/17 10:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林家瑋
研究生(外文):LIN, CHIA-WEI
論文名稱:超親疏水混合表面於沸騰影響
論文名稱(外文):The Effect of Superbiphilic Surface on Boiling
指導教授:許華倚洪祖全
指導教授(外文):HSU, HUA-YIHUNG, TZU-CHEN
口試委員:許華倚洪祖全周永泰
口試委員(外文):HSU, HUA-YIHUNG, TZU-CHENCHOU, YUNG-TAI
口試日期:2020-07-09
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機械工程系機電整合碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:81
中文關鍵詞:流體體積法超親疏水表面沸騰臨界熱通量萊登佛斯特點
外文關鍵詞:VOFsuperbiphilic surfaceboilingcritical heat fluxLeidenfrost point
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 沸騰 2
1.2.1 沸騰機制 2
1.2.2 沸騰曲線 2
1.3 表面濕潤性 4
1.3.1 表面張力 4
1.3.2 接觸角 5
1.3.2.1 平滑均質表面接觸角 5
1.3.2.2 粗糙異質表面接觸角 7
1.4 文獻探討 10
1.4.1 理論方法 10
1.4.2 數值方法 15
1.4.3 實驗方法 18
1.5 研究動機與目的 19
第二章 控制方程式與數值方法 21
2.1 雙相流數值模型簡介 21
2.2 統御方程式 22
2.2.1 質量守恆方程式 22
2.2.2 動量守恆方程式 23
2.2.3 能量守恆方程式 24
2.3 數值方法 25
2.3.1 Continuum Surface Force model 25
2.3.2 VOF流體體積法 26
2.3.3 相轉換方程式 27
2.3.4 Kelvin-Helmholtz and Rayleigh-Taylor不穩定性 30
2.3.5 離散方法 35
2.3.5.1 有限差分法 35
2.3.5.2 有限元素法 36
2.3.5.3 有限體積法 36
2.4 離散空間格式 36
2.4.1 傳輸方程式 36
2.4.2 一階上風 37
2.4.3 二階上風 37
2.4.4 Power Law 38
2.4.5 QUICK 39
2.5 壓力-速度耦合 39
2.5.1 SIMPLE法則 39
2.5.2 PISO法則 41
2.6 無因次量 42
2.6.1 無因次化質量守恆方程式 44
2.6.2 無因次化動量守恆方程式 45
2.6.3 無因次化能量守恆方程式 46
2.6.4 流體無因次數 47
第三章 設定參數與模擬步驟 49
3.1 計算流程 49
3.2 流體性質 50
3.3 幾何模型 51
3.4 邊界條件 52
第四章 結果與討論 55
4.1 沸騰曲線與熱傳係數 55
4.2 臨界熱通量與萊登佛斯特點 66
4.3 速度場 72
第五章 結論與未來展望 74
5.1 結論 74
5.2 未來展望 75
參考文獻 76

1.D. Attinger, C. Frankiewicz, A.R. Betz, T.M. Schutzius, R. Ganguly, A. Das, C.J. Kim and C.M. Megaridis, "Surface Engineering for Phase Change Heat Transfer: A Review," MRS Energy & Sustainability--A Review Journal, 2014, pp.1-40.
2.S. Nukiyama, "The maximum and minimum values of heat Q transmitted from metal to boiling water under atmospheric pressure," Journal Japan Soc., Mech. Eng., Vol. 37, 1934, pp.367-374.
3.S. Pandey, "Dropwise and filmwise condensation. International Journal of Scientific and Engineering Research," International Journal of Scientific & Engineering Research, Vol. 3, No. 4, 2012, pp.1-4.
4.N.A. Patankar, "Supernucleating surfaces for nucleate boiling and dropwise condensation heat transfer," Soft Matter, Vol. 6, 2010, pp.1613.
5.J.W. Rose, "Dropwise condensation theory and experiment: A review," Proceedings of the Institution of Mechanical Engineers, Part A, Vol. 216, 2002, pp.115-128.
6.Y. Yuan and T.R. Lee, "Contact Angle and Wetting Properties," In Surface Science Techniques, G. Bracco and B. Holst (Eds), Springer Series in Surface Sciences, Vol. 51, 2013, pp.3-34.
7.T. Young, "An Essay on the Cohesion of Fluids," Philosophical Transactions of the Royal Society B, Vol. 95, 1805, pp.65-87.
8.R.N. Wenzel, "Resistance of Solid Surfaces to Wetting by Water," Journal of Industrial and Engineering Chemistry, Vol. 28, 1936, pp.988-994.
9.A.B.D. Cassie and S. Baxter, "Wettability of Porous Surfaces," Transactions of the Faraday Society, Vol. 44, 1944, pp.546-551.
10.M. Jakob and W. Linke, "Der Wärmeübergang beim Verdampfen von Flüssigkeiten an senkrechten und waagerechten Flächen," Phys. Z., Vol. 36, 1935, pp.267-280.
11.W.M. Rohsenow, "A method of correlating heat transfer data for surface boiling of liquid," Trans. ASME, Vol. 74, 1952.
12.W. Fritiz, "Berechnung des Maximal Volume von Dampfblasem," Phys. Z., Vol. 36, 1935, pp.379-388.
13.G. Taylor, "The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I," Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, Vol. 201, No. 1065, 1950, pp.192-196.
14.Y.P. Chang, "A theoretical analysis of heat transfer in natural convection and in boiling," ASME, Vol. 79, 1957, pp.1501-1513.
15.N. Zuber, Hydrodynamic aspects of boiling heat transfer, AEC Report AECU-4439, June, 1959.
16.J.H. Lienhard and V.K. Dhir, "Extended hydrodynamic theory of the peak and minimum pool boiling heat fluxes," NASA CR-2270, July, 1973.
17.S.P. Liaw and V.K. Dhir, "Void fraction measurements during saturated pool boiling of water on partially wetted vertical surfaces", J. Heat Transfer, 1989, pp.731-738
18.V.K. Dhir and S.P. Liaw, "Framework for a unified model for nucleate and transition pool boiling," J. Heat Transfer, Vol 111, 1989, pp.739-746.
19.Y. He, M. Shoji and S. Maruyama, "Numerical study of heat flux pool boiling heat transfer," International Journal of Heat and Mass Transfer, Vol. 44, No. 12, 2001, pp.2357-2373.
20.E. Aktinol and V.K Dhir, "Numerical simulation of the effect of contact angle on the thermal response of the solid during nucleate pool boiling," Interfacial Phenomena and Heat Transfer, Vol. 2, No. 4, 2014, pp.301-324.
21.J.G. Leidenfrost, "On the fixation of water in diverse fire," Translation of De aquae communis nonnullis qualitatibus tractatus In Int. J. Heat Mass Transfer, Vol. 9, 1966, pp.1153-1166.
22.Y.P. Chang, "Wave theory of heat transfer in film boiling", J. Heat Transfer, Vol. 81, 1959, pp.1-8.
23.P.J. Berenson, "Film boiling heat transfer from a horizontal surface," ASME J. Heat Transfer, Vol. 83, 1961, pp.351.
24.D. Juric and G. Tryggvason, "Computations of boiling flows," International Journal of Multiphase flow, Vol.24, No. 3, 1998, pp.387-410.
25.I. Tanasawa, "Advances in condensation heat transfer," In Advances in Heat Transfer, J.P. Hartnett and T.F. Irvine (Eds.), Academic Press, 1991.
26.J.M. Delhaye, "Jump conditions and entropy sources in two-phase systems, local instant formulation.," Int. J. Multiphase Flow, Vol. 1, 1974, pp.395-409.
27.C.W. Hirt and B.D. Nichols, "Volume of Fluid (VOF) Method for the Dynamics of Free Boundary," Journal of Computational Physics, Vol. 39, 1981, pp.201-225.
28.D.L. Youngs, "Time-Dependent Multi-Material Flow with Large Fluid Distortion," in Numerical Method for Fluid Dynamics, K.W. Morton and M.J. Baines (Eds.), Academic Press, 1982.
29.M. Huang, L.L. Wu and B. Chen, "A Piecewise Linear Interface-Capturing Volume-of-Fluid Method Based on Unstructured Grids," Numerical Heat Transfer Fundamentals, Vol. 61, No. 5, 2012, pp.412-437.
30.S. Osher and J.A. Sethian, "Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations," J. Comput. Phys, Vol. 79, 1988, pp.12-49.
31.S. Osher and R.P. Fedkiw, "Level Set Methods: An Overview and Some Recent Results, " J. Comput. Phys., Vol. 169, 2001, pp.463-502.
32.P.T. Wang, H.W. Sun, P.Y. Wong, H. Fukuda and T. Ando, "Modeling of Droplet-Based Processing for the Production of High-Performance Particulate Materials Using the Level Set Method," Numer. Heat Transfer A, Vol. 61, 2012, pp.401-416.
33.W.H. Lee, "A Pressure Iteration Scheme for Two-Phase Flow Modeling," in Multiphase Transport Fundamentals, Reactor Safety, Applications, T.N. Veziroğlu (Ed), Hemisphere Publishing Corporation, Vol. 1, 1980.
34.H.L. Wu, X.F. Peng, P. Ye and Y. Eric Gong, "Simulation of Refrigerant Flow Boiling in Serpentine Tubes," Int. J. Heat Mass Transfer, Vol. 50, 2007, pp.1186-1195.
35.Z. Yang, X.F. Peng and P. Ye, "Numerical and experimental investigation of two phase flow during boiling in a coiled tube," International Journal of Heat and Mass Transfer, Vol. 51, No. 5, 2008, pp.1003-1016.
36.S.W.J. Welch and J. Wilson, "A Volume of Fluid Based Method for Fluid Flows with Phase Change," J. Comput. Phys, Vol. 62, 2000, pp.662-682.
37.D.Z. Guo, D.L. Sun, Z.Y. Li and W.Q. "Tao, Phase Change Heat Transfer Simulation for Boiling Bubbles Arising from a Vapor Film by VOSET Method," Numer. Heat Transfer A, Vol. 59, 2011, pp.857-881.
38.Y. Tanaka, M. Yoshino and T. Hirata, "Lattice Boltzmann Simulation of Nucleate Pool Boiling in Saturated Liquid," Communications in Computational Physics, Vol. 9, No. 5, 2011, pp.1347-1361.
39.I. L. Pioro, W. Rohsenow and S.S. Doerffer, "Nucleate pool-boiling heat transfer. I: review of parametric effects of boiling surface, "International Journal of Heat and Mass Transfer, Vol. 47, 2004, pp.5033–5044.
40.R. Chen, M.C. Liu, V. Srinivasan, Z. Wang, H.H. Cho and A. Majumdar, "Nanowires for Enhanced Boiling Heat Transfer," Nano Letters, Vol. 9, No. 2, 2009, pp.548-553.
41.A.R. Betz, J. Xu, H. Qiu and D. Attinger, "Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling ? ," Applied Physics Letters, Vol. 97, No.14, 2010.
42.J.U. Brackbill, D.B. Kothe and C. Zemach, "A Continuum Method for Modeling Surface Tension," Journal of Computational Physics, Vol. 100, No. 2, 1992, pp. 335-354.
43.D. Sun, J. Xu and Q. Chen, "Modeling of the Evaporation and Condensation Phase-Change Problems with FLUENT," Numerical Heat Transfer, Part B: Fundamentals, Vol. 66, No. 4, 2014, pp.326-342.
44.B.J. Kim, J.H. Lee and K.D. Kim, "Rayleigh–Taylor instability for thin viscous gas films: Application to critical heat flux and minimum film boiling," International Journal of Heat and Mass Transfer, Vol. 80, 2015, pp.150-158.
45.V.P. Carey, Liquid-Vapor Phase-Change Phenomena:An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, Washington DC:Hemisphere, 1992, pp.255.
46.H.Y. Hsu, M.C. Lin, B. Popovic, C.R. Lin and N.A. Patankar, "A numerical investigation of the effect of surface wettability on the boiling curve," PLoS One, Vol. 12, No.11, 2017.
47.D. Lörstad and L. Fuchs, "High-order surface tension VOF-model for 3D bubble flows with high density ratio," Journal of Computational Physics, Vol. 200, No. 1, 2004, pp.153-176.
48.H.D Kim and M.H Kim, "Effect of nanoparticle deposition on capillary wicking that influences the critical heat flux in nanofluids," Applied Physics Letter, Vol. 91, No. 1, 2007.
49.H.S. Ahn, C. Lee, J. Kim and M.H. Kim, "The effect of capillary wicking action of micro/nano structures on pool boiling critical heat flux," International Journal of Heat and Mass Transfer, Vol. 55, 2012, pp.89-92.
50.S.G. Kandlikar, "A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation," Journal of Heat Transfer, 2011, pp.1071-1079.
51.賴泰源,表面濕潤性對沸騰氣泡成長的三維模擬,碩士論文,國立臺北科技大學機製造科技研究所,臺北,2018。
52.M.N. Hasan, S.M. Shavik, K.F. Rabbi, K.M. Mukut and Md.M. Alam, "Thermal transport during thin-film argon evaporation over nanostructured platinum surface: A molecular dynamics study," Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, Vol. 232, No. 2, 2018, pp.83-91.

電子全文 電子全文(網際網路公開日期:20250810)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top