(3.235.108.188) 您好!臺灣時間:2021/02/27 23:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃柏豪
研究生(外文):HUANG, BO-HAO
論文名稱:基於中空電極與奈米氣泡輔助電化學放電加工透明硬脆非導體材料之研究
論文名稱(外文):Study on Electrochemical Discharge Machining of Transparent and Brittle Non-conductor Materials based on using Tube Electrode and Nanobubble
指導教授:何昭慶何昭慶引用關係
指導教授(外文):HO, CHAO-CHING
口試委員:郭佳儱張元震林世聰何昭慶
口試委員(外文):KUO, CHIA-LUNGCHANG, YUAN-JENLIN, SHIH-TSONGHO, CHAO-CHING
口試日期:2020-07-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機械工程系機電整合碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:95
中文關鍵詞:電化學放電加工奈米氣泡鑽孔石英玻璃藍寶石中空電極中心噴流鈦鍍層
外文關鍵詞:Electrochemical discharge machiningnanobubblesdrillingquartz glasssapphirehollow electrodecenter jettitanium coating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:42
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電化學放電加工是一種透過施加正向偏壓,產生化學反應,進而產生電火花以融化材料之方法,為一種適合加工透明硬脆材料的方法,而氣膜產生的機理有很多影響因素,包含電解液濃度、電解液種類、電極類型以及加工方式等等,但加工藍寶石一直是個難題,本研究提出兩種輔助方式,第一種是添加奈米氣泡至KOH電解液,然後提出一些方法檢驗奈米氣泡電解液與一般電解液的不同之處,另一種為使用中空電極在加工時吸取與補充電解液,除了這兩種加工輔助方式,本論文也探討導電與非導電鍍層電極在電化學放電加工上的實用性。在加工玻璃的部分,奈米氣泡電解液相較一般電解液加工時間快了31%,且從前20秒的電流響應得到平均電流強度上升了26.7%,以及透過高速攝影機獲取相同時間下的影像與電流,發現中空電極抽取液體時,氣膜生成完至放電區的時間最短,比一般快了34.5%,而氣膜厚度也減少了54%,最後複合兩種方式加工藍寶石,相較於未輔助加工,加工深度提升3.8倍,且提升電壓後,最大深度達440.8 μm。
Electrochemical discharge machining(ECDM) is a method of generating a chemical reaction by applying a forward bias voltage, and then generating electric sparks that melting the material. It is a suitable method for processing transparent hard and brittle materials. The mechanism of gas film generation has many influencing factors, including electrolyte concentration, electrolyte type, electrode type and processing method, etc.
However, it is a problem in processing sapphire when using ECDM. This research proposes two auxiliary methods to assist. First, adding nano-bubble into the electrolyte, KOH, and propose some ways to check the nano-bubbles electrolyte is different from normal electrolyte. The other one is using hollow electrode to absorb and replenish electrolyte during processing. Except these two assisted method, this paper also verify and discuss the practicality of conductive and non-conductive coating electrodes in ECDM.
In the glass processing part, the processing time of the nanobubble electrolyte is faster than the way which use the general electrolyte around 31%. The average current intensity has increased by 26.7%. We analyze the current response result in the first 20 seconds. And operate through the high-speed camera to obtain the image and current at the same time. It is found that when using the hollow electrode extracts liquid, the shortest time from the formation of the gas film to the discharge area is 34.5%. which is. It is faster than usual. And the gas film thickness is also reduced by 54%. Finally, sapphire is processed by combining this two methods. Compared with the unassisted processing, the processing depth is increased by 3.8 times, and after the voltage is increased, the maximum depth reaches 440.8 μm.

摘要 i
ABSTRACT ii
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 改變電解液參數造成之影響 2
1.2.2 改變電極形狀造成之影響 9
1.2.3 鍍層電極減少側壁放電對電化學放電加工造成之影響 21
1.2.4 透過中空電極進行定量補給電解液 23
1.2.5 電解質內微氣泡破裂所產生的ROS對加工之影響 25
1.3 研究動機與目的 26
1.4 本文架構 27
第二章 實驗基礎原理與加工機制 28
2.1 電化學放電加工原理 28
2.1.1 電化學放電加工概述 28
2.1.2 氣泡生成機制 30
2.1.3 電火花形成過程 37
2.1.4 材料消融機制 38
第三章 電化學加工系統設備 39
3.1 電化學加工系統設備 39
3.1.1 取像設備 40
3.1.2 光源設備 42
3.1.3 鏡組設備 43
3.1.4 電化學放電加工設備 44
3.1.5 直流電源分析儀 45
3.1.6 壓力吐出機 46
3.2 實驗結果量測設備 47
3.2.1 三維輪廓量測儀 47
3.2.2 薄膜厚度輪廓測量儀 48
3.2.3 奈米粒子分析儀 49
3.3 加工試片及電極 50
3.4 噴吸電解液機構介紹 51
3.5 彈簧平台介紹 52
第四章 實驗參數設置 55
4.1 加工參數選擇 55
4.1.1 中空電極內孔直徑 55
4.1.2 電解液濃度選擇 56
第五章 實驗結果討論 58
5.1 玻璃加工 58
5.1.1 旋轉以及奈米氣泡對氣膜造成之影響 58
5.1.2 奈米氣泡電解液加工 62
5.1.3 三種測定有無氣泡之方法 67
5.1.4 鍍層對電化學放電加工之影響 70
5.1.5 中空電極進行噴液及吸液探討 77
5.2 藍寶石加工 80
5.2.1 鍍層錐狀電極加工藍寶石 81
5.2.2 錐狀中空電極配合奈米氣泡以及抽吸電解液加工藍寶石 85
5.2.3 使用錐形中空電極拉高電壓進行藍寶石加工 86
第六章 結論與未來展望 88
6.1 結論 88
6.2 未來展望 89
參考文獻 90
附錄:口試問題與答覆 94


[1]Mehmet Alp Ilgaz, Bostjan Batagelj, “Proposal for distribution of a low-phase-noise oscillator signal in forthcoming fifth-generation mobile network by radio-over-fibre technology,” International Symposium ELMAR, Zadar, Croatia, 2016.
[2]Jae-Hoon Lee, Seok-Min Hwang, Nam-Seung Kim, Jung-Hee Lee, “InGaN-Based High-Power Flip-Chip LEDs With Deep-Hole-Patterned Sapphire Substrate by Laser Direct Beam Drilling,” in IEEE Electron Device Letters, 2010, pp. 698-700.
[3]Nozomi Takayama, Shouhei Asaka, Jiwang Yan, “Nanosecond pulsed laser irradiation of sapphire for developing microstructures with deep V-shaped grooves,” Precision Engineering, vol. 52, pp. 440-450, 2018.
[4]X.C.Wang, H.Y.Zheng, P.L.Chu, J.L.Tan, K.M.Teh, T.Liu, Bryden C.Y.Ang, G.H.Tay, “High quality femtosecond laser cutting of alumina substrates, ,” Optics and Lasers in Engineering, vol. 48, pp. 657-663, 2010.
[5]Pravin Pawar1, Raj Ballav, Amaresh Kumar, “Machining processes of sapphire an overview,” International Journal of Modern Manufacturing Technologies, vol. 4, no. 1, 2017.
[6]QiuyanWang, WenxiangZhao, ZhiqiangLiang, XibinWang, TianfengZhou, YongboWu, LiJiao, “Investigation of diamond wheel topography in elliptical ultrasonic assisted grinding (EUAG) of monocrystal sapphire using fractal analysis method,” Ultrasonics, vol. 84, pp. 87-95, 2018.
[7]Chao-Ching Ho, Jia-Chang Chen, “Micro-drilling of sapphire using electro chemical discharge machining,” Micromachines, 2020.
[8]Nasim Sabahi, Mohammad Reza Razfar, Mansour Hajian, “Experimental investigation of surfactant-mixed electrolyte into electrochemical discharge machining (ECDM) process,” Journal of Materials Processing Technology, vol. 250, pp. 190-202, 2017.
[9]Min-Seop Han, Byung-Kwon Min, Sang Jo Lee, “Improvement of surface integrity of electro-chemical discharge machining process using powder-mixed electrolyte,” Journal of Materials Processing Technology, vol. 191, pp. 224-227, 2007.
[10]S. Elhami M. R. Razfar, “Application of nano electrolyte in the electrochemical discharge machining process,” Precision Engineering, vol. 64, pp. 34-44, 2020.
[11]Nasim Sabahi, Mohammad Reza Razfar, “Investigating the effect of mixed alkaline electrolyte (NaOH + KOH) on the improvement of machining efficiency in 2D electrochemical discharge machining (ECDM),” The International Journal of Advanced Manufacturing Technology, vol. 95, pp. 643-657, 2018.
[12]Cheng-Kuang Yang, Kun-Ling Wu, Jung-Chou Hung, Shin-Min Lee, Jui-Che Lin, Biing-Hwa Yan, “Enhancement of ECDM efficiency and accuracy by spherical tool electrode,” International Journal of Machine Tools and Manufacture, vol. 51, pp. 528-535, 2011.
[13]Ali Heidari, Mohammad Reza Razfar, Ali Behroozfar, Majid Kavousi, “Effect of tube-electrode inner structure on machining performance in tube-electrode high-speed electrochemical discharge drilling,” ICMEMS, 2014.
[14]Yan Zhang, Zheng-yang Xu, Yun Zhu, Di Zhu, “Effect of tube-electrode inner structure on machining performance in tube-electrode high-speed electrochemical discharge drilling,” Journal of Materials Processing Technology, vol 231, pp. 38-49, 2016.
[15]Bao-Yang Jiang, Shu-Huai Lan, Jun Ni, Zhao-Yang Zhang, “Experimental investigation of spark generation in electrochemical discharge machining of non-conducting materials,” Journal of Materials Processing Technology, vol. 214, pp. 892-898, 2014.
[16]Chih-Ping Cheng, Kun-Ling Wu, Chao-Chuang Mai, Cheng-Kuang Yang, Yu-Shan Hsu, Biing-Hwa Yan, “Study of gas film quality in electrochemical discharge machining,” International Journal of Machine Tools and Manufacture, vol. 50, pp. 689-697, 2010.
[17]Min-Seop Han, Byung-Kwon Min, Sang Jo Lee, “Modeling gas film formation in electrochemical discharge machining processes using a side-insulated electrode,” Journal of Micromechanics and Microengineering, vol. 18, no. 4, 2008.
[18]Wei-Dong Tang, Xiao-Ming Kang, Wan-Sheng Zhao, “Enhancement of electrochemical discharge machining accuracy and surface integrity using side-insulated tool electrode with diamond coating,” Journal of Micromechanics and Microengineering, vol. 27, no. 6, 2017.
[19]Rajendra, Kumar Arya, Akshay Dvivedi, “Investigations on quantification and replenishment of vaporized electrolyte during deep micro-holes drilling using pressurized flow-ECDM process,” Journal of Materials Processing Technology, vol. 266, pp. 217-229, 2019.
[20]Xiao-Bin Yu, Zhong-Hang Wang, Yeqing Lv, Shaona Wang, Shili Zheng, Hao Du, Yi Zhang, “Effect of microbubble diameter, alkaline concentration and temperature on reactive oxygen species concentration,” Journal of Chemical Technology and Biotechnology, vol. 92, pp. 1738-1745, 2017.
[21]林祐安,「基於電極操控輔助電化學放電鑽孔加工法於透明硬脆材料之研究」 ,臺北科技大學製造科技所,碩士論文,2019年8月。
[22]B Bhattacharyya, B. N Doloi, S. K Sorkhel, “Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials,” Journal of Materials Processing Technology, vol. 95, pp. 145-154, 1999.
[23]Rolf Wüthrich, “Micromachining Using Electrochemical Discharge Phenomenon,” in Micro and Nano Technologies, 2009.
[24]産 業 技 術 総 合 研 究 所 ホ ー ム ペ ー ジ , http//www.aist.go.jp.
[25]Mudimallana Goud, Apurbba KumarSharma, ChandrashekharJawalkar, “A review on material removal mechanism in electrochemical discharge machining (ECDM) and possibilities to enhance the material removal rate,” Precision Engineering, vol. 45, pp. 1-17, 2016.
[26]精準股份有限公司,http://www.applied.com.tw/page/products/?4.html.
[27]陳家昌,「以同軸噴氣輔助電化學放電加工法於透明硬脆材料之研究」 ,臺北科技大學製造科技所,碩士論文,2018年8月。

電子全文 電子全文(網際網路公開日期:20250821)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔