(3.239.33.139) 您好!臺灣時間:2021/02/26 23:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴嘉鴻
研究生(外文):LAI, CHIA-HUNG
論文名稱:山岳隧道三維數值分析 -以臺灣既有隧道資料模擬頂拱變位
論文名稱(外文):Three-Dimensional Numerical Analysis of Mountain Tunnels – Simulation of Crown Arch Displacement Using Data from Existing Tunnels in Taiwan
指導教授:陳水龍陳水龍引用關係
指導教授(外文):CHEN, SHONG-LOONG
口試委員:陳水龍李勝宗陳卓然何政道
口試委員(外文):CHEN, SHONG-LOONGLI, SHENG-ZONGCHEN, JHUO-RANHO, CHENG-TAO
口試日期:2020-07-23
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:土木工程系土木與防災碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:113
中文關鍵詞:山岳隧道隧道變形有限元素隧道開挖岩栓頂拱垂直變位
外文關鍵詞:Mountain TunnelsTunnel DeformationFinite ElementTunnel ExcavationRock boltVtical Displacement of Crown Arch
相關次數:
  • 被引用被引用:0
  • 點閱點閱:49
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究為探討臺灣山岳隧道在不同地質情況下,所產生隧道變形之行為。本文採用PLAXIS 3D 2018軟體,以三維數值模擬(Three dimensional numerical simulation)隧道頂拱(Crown)變位分析,過程中選用隧道斷面、初期支撐(Primary support)與輪進長度皆盡可能與現地(In situ)施工相同,隧道周圍之介面依岩體差異採用不同的材料組合律。以岩體組合律(Rock Mass Constitute Law)-Hoek-Brown及Mohr-Coulomb兩種不同模式分析,探討施作岩栓與未施作相較之下,所帶來的成果與效益,將分析結果比對。由三維有限元素計算得知,地質材料之強弱對於同尺寸斷面隧道變位影響極大。分析顯示,在岩體等級愈弱且隧道斷面愈大,開挖後所產生之變位量則愈高。若忽略時間產生之潛變行為,隧道產生之最大變位量約在開挖處後方2至3倍隧道直徑距離處。而開挖面變位量約為隧道最大變位量之0.31至0.57之間,此值隨著岩體等級愈弱而愈高。開挖面前方之變位量比值隨著距離增加而遞減,在開挖面前方約1至1.5倍隧道直徑處,其比值已降至約0.1左右。本研究採用岩體組合律Hoek-Brown及Mohr-Coulomb兩種模式分析岩栓施作與否,其結果顯示在良好(Goog)、中等(Medium)岩體之中,其頂拱垂直變位差異並不明顯,而在碎弱(Poor)及大隧道斷面,此效果更加顯著,最大變位折減率可達5%左右。
The study was aimed to investigate the displacements in mountain tunnels in Taiwan under various geological conditions. The vertical displacements of crown arch were analyzed using the program, PLAXIS 3D 2018, for three-dimensional numerical simulation. Tunnel cross sections, primary supports and advancing length were selected as close to those of in-situ constructions. Various constitute laws were introduced according to the rock mass in the interfaces around the tunnels. Two rock mass constitute laws, Hoek-Brown and Mohr-Coulomb models, were used to study the results and effects of rock bolts in comparison to the lack of them. It is learned from the 3D finite element analysis that the strength of geological materials has significant influence on the displacements in tunnels of the same cross section. The analysis showed that the weaker the rock mass was and the larger the cross section was, the greater the displacements were produced behind tunnel excavation. The maximum displacement in tunnel was located 2 to 3 times of tunnel diameter behind the cutting face if the creep behavior generated over time was ignored. The displacement at the cutting face, however, fell between 31% and 57% of the maximum displacement and increased as the rock mass became weaker. The ratio for the displacement in front of the cutting face increased with distance. The ratio dropped to roughly 10% at 1 to 1.5 times of the tunnel diameter in front of the cutting face. The Hoek-Brown and Mohr-Coulomb models were used to analyze the effects of rock bolts and the absence of them. The results indicated that the vertical displacement of crown arch was not significantly different in good or medium rock mass. The effects, however, were significant in poor rock mass and tunnels with large cross section. The maximum displacement reduction ratio could reach as much as 5%.
摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vi
表目錄 ix
圖目錄 xi
第一章 緒論 1
1.1研究動機 1
1.2研究目的 2
1.3研究方法與流程 3
1.4論文架構範圍與限制 4
第二章 文獻回顧 5
2.1隧道變形行為影響 5
2.1.1隧道開挖之變形 5
2.1.2隧道塑性區影響 16
2.2岩石材料性質 17
2.2.1 岩石強度 18
第三章 分析案例工程概述 26
3.1 臺灣快速公路隧道簡介 26
3.1.1岩體分類原則 30
3.2山岳隧道開挖施工及支撐 33
3.3監測方法 33
第四章 數值分析方法與模式介紹 39
4.1 PLAXIS 3D程式簡介 39
4.2 PLAXIS之大地工程應用 41
4.2 有限元素分析方法 42
4.3土壤模式之應用 43
4.3.1 Linear-elastic應力-應變關係 43
4.3.2 Mohr-Coulomb模式 44
4.3.3 Hoek-Brown模式 48
4.3.4 Mohr-Coulomb與Hoek-Brown之參數轉換 57
4.4山岳隧道分析流程概述 59
第五章 山岳隧道開挖分析及探討 69
5.1材料參數選用 69
5.1.1 Mohr-Coulomb模式材料參數 70
5.1.2 Hoek-Brown模式材料參數 71
5.1.3隧道襯砌、岩栓、輪進、網格參數 72
5.2隧道頂拱垂直變位量 75
5.3 Mohr-Coulomb與Hoek-Brown分析比較 84
5.4施作岩栓之效益分析 87
5.5 正規化後之隧道變位量分析 90
5.6 與文獻資料-Unlu and Gercek公式比對 97
5.6.1 良好岩體 98
5.6.2 中等岩體 99
5.6.3 碎弱岩體 101
第六章 結論與建議 104
6.1結論 105
6.2建議 107
參考文獻 108

1.Basarir, H., Genis, M., Ozarslan, A., “The analysis of radial displacements occurring near the face of a circular opening in weak rock mass”, International Journal of Rock Mechanics and Mining Sciences, 47(5), 2010, pp. 771-783.
2.Behnam Yazdani Bejarbaneh, Danial Jahed Armaghani, Mohd For Mohd Amin, “Strength characterisation of shale using Mohr-Coulomb and Hoek-Brown criteria.”, Measurement, 2015, pp.269-281.
3.B.H.G. Brady and E.T. Brown, Rock Mechanics for Underground Mining, 2nd ed., London: Chapman and Hall, 1993.
4.Bieniawski, Z.T.. Engineering Rock Mass Classification, John Wiley & Sons, New York, USA, 1989, pp. 51-68.
5.Bieniawski, Z.T.,” Rock mass classification in rock engineering.”, Exploration for rock engineering, 1976, pp.97-106
6.Brady, B.H.G. and Brown, E.T., Rock Mechanics for Underground Mining (2nd ed), Chapman and Hall, London, UK, 1993.
7.Brinkgreve, R.B.J., Plaxis Manual-General Information, Plaxis B.V., Delft, Netherlands, 2017.
8.Brinkgreve, R.B.J., Plaxis Material Models Manual, Plaxis B.V., Delft, Netherlands, 2017.
9.Carranza-Torres, C. and Fairhurst, C., “Application of the convergence-confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion”, Tunnelling and Underground Space Technology, 15(2), 2000, pp. 187-213. 
10.Chen, S.L., Lee, S.C., Gui, M.W., “Effect of rock pillar width
on the excavation behavior of parallel tunnels”, Tunnel Space Tech., 24(2), 2009, pp. 48-154.
11.Deere et al., “Geological considerations”, Rock Mechanics in Engineering Practice, 968, pp. 1-20.
12.Ding, L. and Liu, Y., “Study on deformation law of surrounding rock of super long and deep buried sandstone tunnel”, Geomechanics and Engineering, 16(1), 2018, pp. 7-104.
13.Eberhardt Erik, “The Hoek-Brown failure criterion”, Rock Mech Rock Eng., 45(6), 2012, pp. 981-988.
14.E. Hoek, Practical Rock engineering, chapter of rock mass properties, Evert Hoek Consulting Engineer Inc., North Vancouver, British Columbia, Canada, 2007.
15.E. Hoek, Carranza C., Corkum B., “Hoek-Brown failure criterion-2002 edition”, Proc. NARMS-TAC Conference, Toronto, Ontario, Canada, July, 2002, pp. 267-273.
16.E. Hoek, E.T. Brown, “The Hoek-Brown failure criterion and GSI−2018 edition”, Journal of Rock Mechanics and Geotechnical Engineering, 2018, pp. 1-19.
17.Fu-Ping Zhang, Dian-Qing Lia, Zi-Jun Caoa, Te Xiaoa, Jian Zhaob, “Revisiting statistical correlation between Mohr-Coulomb shear strength parameters of Hoek-Brown rock masses.”, Tunnelling and Underground Space Technology, 2018, pp. 36-44.
18.Jin-Ching CHERN, Fu-Yuan HSIAO, “INTERACTION BEHAVIOR OF THE HSUEHSHAN TUNNELS”, WORLD LONG TUNNELS, 2005, pp. 73-80.
19.Lee, S.C. and Tseng, D.J., “Review and perspective of pressway in Taiwan”, Journal of Rock Mechanics and Geotechnical Engineering, 3(1), 2011, pp. 385-397. 
20.Marinos Vassilis., Carter Trevor.G., “Maintaining geological reality in application of GSI for design of engineering structures in rock.”, Engineering Geology, 2018, pp. 282-297.
21.Marcio Muniz de Farias, Alvaro Henrique Moraes Junior, Andre Pacheco de Assis, "Displacement control in tunnels excavated by the NATM: 3-D numerical simulations," Tunnelling and Underground Space Technology, vol. 19, 2004, pp. 283-293.
22.Obert, L. and Duvall, W.I. “Rock Mechanics and the Design of Structures in Rock., John Wiley & Sons, New York, 1963, pp. 650.
23.Panet M., “Understanding deformations in tunnels”, Comprehensive rock engineering, (Vol.1), London: Pergamon, 1993, pp. 663-690.
24.PLAXIS Maunual, “3D2018-Material Models Maunual”, 2018.
25.Rasoul Sadeghiyan, Mahmoud Hashemi and Ehsan Moloudi, "Determination of longitudinal convergence profile considering effect of soil strength parameters," International Journal of Rock Mechanics & Mining Sciences, vol. 82, 2016, pp. 10-21.
26.Robert Bertuzzi, Kurt Douglas, Garry Mostyn, “Improving the GSI Hoek-Brown criterion relationships.”, International Journal of Rock Mechanics Mining Sciences, 2016, pp. 185-199.
27.Sadeghiyan, R., Hashemi, M., Moloudi, E., “Determination of longitudinal convergence profile considering effect of soil strength parameters”, Int J Rock Mech Min Sci., 82, 2016, pp. 10-21. 
28.SHI Yu-feng, LUO Qing, ZHAO Xiu-shao, P Sheng, “A Study of the Mechanical Properties of Middle-rock-wall and Preliminary Lining of a Shallow Large-span Tunnel with Small Interval”, Journal of Highway and Transportation Research and Development, 2016, pp. 51.
29.S.L. Chen, S.C. Lee, “An investigation on tunnel deformation behavior of expressway tunnels”, Geomechanics and Engineering, 2020, pp. 215-226.
30.S.L. Chen, S.C. Lee, M.W. Gui, “Effects of rock pillar width on the excavation behavior of parallel tunnels”, Tunnelling and Underground Space Technology, 2009, pp. 148-154.
31.Taiwan Area National Expressway Engineering Bureau, MOTC, Second Highway Construction Album-Tunnel and geoengineering, Taipei, Taiwan (ROC), 2004, pp. 68-72.
32.Taiwan Area National Expressway Engineering Bureau, MOTC, Beiyi expressway construction (technical Edition), tunnel engineering, Taipei, Taiwan (ROC), 2006, pp. 59.
33.Taiwan Area National Expressway Engineering Bureau, MOTC, Technical Practice of National Highway Geoengineering, Taipei, Taiwan (ROC), 2013, pp. 87-140.
34.Unlu, T. and Gercek, H., “Effect of Poisson’s ratio on the normalized radial displacements occurring around the face of a circular tunnel”, Tunnel Space Tech., 18(5), 2003, pp. 547-553.
35.Yanbin Luo, Jianxun Chen, Yi Chen, Pengsheng Diao, Xiong Qiao, “Longitudinal deformation profile of a tunnel in weak rock mass by using the back analysis method.”, Tunnelling and Underground Space Technology, 2018, pp. 478-493. 
36.Yoo, C. and Choi, J., “Effect of construction sequence on three-arch tunnel behavior – Numerical investigation”, Geomechanics and Engineering, 15(3), 2018, pp. 911-917.
37.交通部台灣區國道新建工程局,「國道北宜高速公路工程細部設計階段補充地質調查工作大地力學試驗期末報告」,臺北:財團法人中興工程顧問社,1993,第14-47頁。
38.交通部台灣區國道新建工程局,「國道工程實務」,臺北:交通部台灣區國道新建工程局,2006,第157-163頁。
39.交通部台灣區國道新建工程局,「隧道施工技術經驗交流成果專輯」,臺北:交通部台灣區國道新建工程局,1999,第181-189頁。
40.交通部台灣區國道新建工程局,「隧道工程施工技術解說圖冊」,臺北:交通部台灣區國道新建工程局,2006。
41.交通部高速公路局(https://www.freeway.gov.tw/)
42.交通部高速鐵路工程局,「隧道新奧工法施工概述」,臺北:交通部高速鐵路工程局,第138-141頁。
43.李孟哲,「多孔近接隧道配置中間牆之三維數值分析」,碩士論文,國立臺北科技大學,臺北,2019。
44.李國維,「三孔平行隧道開挖應力互制行為數值分析」,碩士論文,國立臺北科技大學,臺北,2006。
45.李勝宗,「三孔鄰近隧道開挖互制行為探討」,碩士論文,國立臺北科技大學,臺北,2004。
46.李勝宗,「山岳隧道與雙園潛盾隧道三維變形分析」,博士論文,國立臺北科技大學,臺北,2016。
47.何維維,「基於量化的地質強度指標在圍岩力學參數評價中的應用」,岩土工程技術,第31卷,第5期,2017,第237-239頁。 
48.邱柏嘉,「土壓平衡式潛盾隧道通過軟弱岩盤之三維分析」,碩士論文,國立臺北科技大學,臺北,2018。
49.汪燮之,「實用隧道工程學」,臺北:國立編譯館,1987,第187-209頁
50.於汝山、楊宜、許冬雨,「Hoek-Brown強度準則在深部岩體力學參數估算中的應用研究」,長江科學院院報,第35卷,第1期,2018,第123-127頁。
51.林筑瑩,「曲線隧道開挖引致地表沉陷之三維分析」,碩士論文,國立臺北科技大學,臺北,201。
52.施成華、彭立敏、黃娟,「隧道施工工序對地層變形影響研究」,岩土工程學報,第30卷,第9期,2008,第1304-1308頁。
53.胡盛明、胡修文,「基於量化的GSI系統和Hoek-Brown準則的岩體力學參數的估計」,岩土力學,第32卷,第3期,2011,第862-866頁。
54.洪如江,「初等工程地質大綱」,地工技術,2016。
55.陳水龍、李勝宗,「山岳隧道開挖變形行為分析探討」,第十七屆海峽兩岸隧道與地下工程學術與技術研討會,臺灣花蓮,2018,第B-1-1-B-1-12頁。
56.陳拓融,「雙圓型潛盾隧道在不同排水模式之三維分析」,碩士論文,國立臺北科技大學,臺北,2018。
57.張吉佐、劉弘祥,「山岳隧道工程設計與實例手冊」,臺北:中華民國隧道協會叢書,1999,第5-1-5-16頁。
58.鄭富書、黃燦輝、林銘郎,「台灣隧道工程老問題之新探討一軟岩之力學特性」,地工技術,第79期,2000,第81-92頁。

電子全文 電子全文(網際網路公開日期:20250824)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔