跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/16 01:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:MAHENDRA BABU KANTIPUDI
研究生(外文):MAHENDRA BABU KANTIPUDI
論文名稱:先進磁流變液阻力元件在工程應用之探討與開發
論文名稱(外文):Investigation and Development of Advanced Magneto-Rheological Fluid Based Devices for Engineering Applications
指導教授:蕭耀榮蕭耀榮引用關係
指導教授(外文):SHIAO, YAO-JUNG
口試委員:蕭耀榮蕭俊祥陳立文顏炳郎陳志鏗
口試委員(外文):SHIAO, YAO-JUNGSHAW, JIN-SIANGCHEN, LI-WENYEN, PING-LANGCHEN, CHIH-KENG
口試日期:2020-07-24
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:機電學院機電科技博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:125
中文關鍵詞:磁流變液磁流變液阻力器磁流變液閥多磁極磁流變液阻力器
外文關鍵詞:Magnetorheological fluidMR brakeMR valveMulti-pole MR brake
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
ABSTRACT iii
Acknowledgments V
Table of Contacts Vi
List of Tables X
List of Figures Xi
Chapter 1: Introduction 1
1.1. Overview 1
1.2. Research Motivation 2
1.2.1. MR Valve Train 2
1.2.2. MR Brake 2
1.3. Research Target 3
1.3.1. MR Valve Train 3
1.3.2. MR Brake 4
1.4. Research Outline 4
Chapter 2: Literature Review 7
2.1. Field-Based Controllable Fluids 7
2.2. Magnetorheological Fluid Composition 9
2.3. Electromagnetism 11
2.4. Hysteresis Loop 12
2.5. Magnetic Properties of MR Fluids 13
2.6. MR Rheology 14
2.7. MR Fluid Modes of Operation 15
2.7.1. Shear Mode 16
2.7.2. Flow Mode 16
2.7.3. Squeeze Mode 17
2.8. Devices Based on MR Fluid 17
2.8.1. MR Damper 17
2.8.2. MR Brake 19
2.8.3. MR Mounts 23
2.8.4. MR Clutch 24
2.8.5. MR Valves 25
2.8.6. Engine Valve 26
2.8.7. Haptic Devices 28
2.8.8. MR Based Steer by Wire 29
2.8.9. Rehabilitation Devices 30
Chapter 3: Conceptual Designs 32
3.1. Design of New Generation MR Valve 32
3.1.1. Construction Details 32
3.1.2. Working Modes 34
3.2. Design of MPDD MR Brake 38
3.2.1. Construction Details 38
3.2.2. Working Principle 40
Chapter 4: Mathematical Models 42
4.1. Analytical Model for Resistance Force in the MR Valve 42
4.2. The Engine Model for Engine Performance Simulations 43
4.3. Magnetic Model of MPDD MR Brake 46
4.4. Torque Model of MPDD MR Brake 50
4.5. Multi-Physics Analysis of MR Brake 52
Chapter 5: Design Improvement 55
5.1. MR Layers Block Design Improvement 55
5.2. New Disc Type MR Brake Optimization Procedure 59
Chapter 6: Experimental Study 63
6.1. Experimental Tests for MR Valve 63
6.1.1. Test Setup 63
6.1.2. Test Procedure 64
6.2. Dynamic Testing of Proposed MR Brake 66
6.2.1. Manufactured MPDD MR Brake 66
6.2.2. Test Platform 68
Chapter 7: Results and Discussions 71
7.1. Results of Designed MR Valve 71
7.1.1. Dynamic Simulations 71
7.1.2. Experimental Results 76
7.1.3. Engine Performance Study 81
7.2. Results of Designed MPDD MR Brake 89
7.2.1. Results of Design Improvement Study 89
7.2.2. Results of Magnetic Study 93
7.2.3. Thermal Study 95
7.2.4. Results of Experimental Study 96
7.3. MPML Drum Brake with Intermediate Slots 101
7.3.1. Design of MPML Drum-Type MRB 101
7.3.2. Electro-Magnetic Model 104
7.3.3. Design Improvement 105
7.3.4. Magnetic Simulation 110
7.3.5. Slot Position Study 112
Chapter 8: Conclusions 114
References 116
APPENDIX A 122
A1. International Journal Papers 122
A2. Conference Papers 122
APPENDIX B 123
B1. Symbols 123
B2. Subscripts 124
B3. Abbreviations 125

1.Hao, T. (2001). Electrorheological fluids. Advanced Materials, 13(24), 1847-1857.
2.Ashtiani, M., Hashemabadi, S. H., & Ghaffari, A. (2015). A review on the magnetorheological fluid preparation and stabilization. Journal of magnetism and Magnetic Materials, 374, 716-730.
3.Spaggiari, A. (2013). Properties and applications of Magnetorheological fluids. Frattura ed Integrità Strutturale, 7(23), 48-61.
4.Farjoud, A. (2007). Magneto-rheological fluid rotary brake used in wheeled vehicles (Doctoral dissertation).
5.Carlson, J. D., Catanzarite, D. M., & St. Clair, K. A. (1996). Commercial magneto-rheological fluid devices. International Journal of Modern Physics B, 10(23n24), 2857-2865.
6.Park, J. H., & Park, O. O. (2001). Electrorheology and magnetorheology. Korea-Australia Rheology Journal, 13(1), 13-17.
7.Phule, P. P. (2001). Magnetorheological (MR) fluids: principles and applications. Smart Materials Bulletin, 2001(2), 7-10.
8.Jolly, M. R., Bender, J. W., & Carlson, J. D. (1999). Properties and applications of commercial magnetorheological fluids. Journal of intelligent material systems and structures, 10(1), 5-13.
9.Choi, S. B., & Han, Y. M. (2012). Magnetorheological fluid technology: applications in vehicle systems. CRC press.
10.Rosensweig, R. E., Kaiser, R., & Miskolczy, G. (1969). Viscosity of magnetic fluid in a magnetic field. Journal of Colloid and Interface Science, 29(4), 680-686.
11.Rabinow, J. (1948). The magnetic fluid clutch. Electrical Engineering, 67(12), 1167-1167.
12.Data, L. T. "MRF-140CG Magneto-Rheological Fluid." LORD Corp. 48 (2008)
13.Data, L. T. "MRF-132DG Magneto-Rheological Fluid." LORD Corp. 48 (2008)
14.Data, L. T. "MRF-122EG Magneto-Rheological Fluid." LORD Corp. 48 (2008)
15.Shiao, Y., Kantipudi, M. B., & Jiang, J. W. (2019). Novel Spring-Buffered Variable Valve Train for an Engine Using Magneto-Rheological Fluid Technology. Frontiers in Materials, 6, 95.
16.Yao, G. Z., Yap, F. F., Chen, G., Li, W., & Yeo, S. H. (2002). MR damper and its application for semi-active control of vehicle suspension system. Mechatronics, 12(7), 963-973.
17.Gong, X., Ruan, X., Xuan, S., Yan, Q., & Deng, H. (2014). Magnetorheological damper working in squeeze mode. Advances in Mechanical Engineering, 6, 410158.
18.Lee, U., Kim, D., Hur, N., & Jeon, D. (1999). Design analysis and experimental evaluation of an MR fluid clutch. Journal of Intelligent Material Systems and Structures, 10(9), 701-707.
19.Shiao, Y., & Nguyen, Q. A. (2013). Development of a multi-pole magnetorheological brake. Smart Materials and Structures, 22(6), 065008.
20.Wang, J., & Meng, G. (2001). Magnetorheological fluid devices: principles, characteristics and applications in mechanical engineering. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 215(3), 165-174.
21.Data, L. T. “Magneto-Rheological (MR) Suspension Systems” 2018 LORD Corporation OD PB8140 (Rev.1 3/18)
22. Dyke, S.J., Spencer, B.F., Sain, M.K., and Carlson, J.D. (1996). Phenomenological Model of a Magneto-rheological Damper. ASCE Journal of Engineering Mechanics. 123, 230-8.
23. Dyke, S.J., Spencer, B.F., Sain, M.K., and Carlson, J.D. (1996). Modeling and control of magneto-rheological dampers for seismic response reduction. Smart Materials and Structures.5, 565-575.
24. Dyke, S.J., Spencer, B.F., Sain, M.K., and Carlson, J.D. (1998). An experimental study of MR damper for seismic protection. Smart Materials and Structures.7, 693-703.
25.Yao, Z., Yap, G., Fook, F., Chen, G., Li., et.al. (2002). MR Damper and Its Application for Semi-Active Control of Vehicle Suspension System. Mechatronics. 12. 963-973. 10.1016/S0957-4158(01)00032-0.
26.Choi, S. B., Lee, H., Hong, S. R., & Cheong, C. (2000, June). Control and response characteristics of a magnetorheological fluid damper for passenger vehicles. In Smart Structures and Materials 2000: Smart Structures and Integrated Systems (Vol. 3985, pp. 438-443). International Society for Optics and Photonics.
27.Choi, S. B., Nam, M. H., & Lee, B. K. (2000). Vibration control of a MR seat damper for commercial vehicles. Journal of Intelligent Material Systems and Structures, 11(12), 936-944.
28.Carlson, J. D., Matthis, W., & Toscano, J. R. (2001, June). Smart prosthetics based on magnetorheological fluids. In Smart structures and materials 2001: industrial and commercial applications of smart structures technologies (Vol. 4332, pp. 308-316). International Society for Optics and Photonics.
29.Attia, E. M., Elsodany, N. M., El-Gamal, H. A., & Elgohary, M. A. (2017). Theoretical and experimental study of magneto-rheological fluid disc brake. Alexandria Engineering Journal, 56(2), 189-200.
30.Nguyen, Q. H., V. T. Lang, and S. B. Choi. "Optimal design and selection of magneto-rheological brake types based on braking torque and mass." Smart Materials and Structures24.6 (2015): 067001.
31.Nguyen, Q. H., and S. B. Choi. "Optimal design of a novel hybrid MR brake for motorcycles considering axial and radial magnetic flux." Smart Materials and Structures 21.5 (2012): 055003.
32.Attia, E. M., Elsodany, N. M., El-Gamal, H. A., & Elgohary, M. A. (2017). Theoretical and experimental study of magneto-rheological fluid disc brake. Alexandria Engineering Journal, 56(2), 189-200.
33.Li, W. H., & Du, H. (2003). Design and experimental evaluation of a magnetorheological brake. The International Journal of Advanced Manufacturing Technology, 21(7), 508-515.
34.Zhou, Wei, Chee-Meng Chew, and Geok-Soon Hong. "Development of a compact double-disk magneto-rheological fluid brake." Robotica 25.4 (2007): 493-500.
35.Wang, D. M., Y. F. Hou, and Z. Z. Tian. "A novel high-torque magnetorheological brake with a water cooling method for heat dissipation." Smart Materials and Structures 22.2 (2013): 025019.
36.Shiao, Y., & Nguyen, Q. A. (2014). Torque enhancement for a new magnetorheological brake. Procedia Engineering, 76, 12-23.
37.Shiao, Y., Ngoc, N. A., & Lai, C. H. (2016). Optimal design of a new multipole bilayer magnetorheological brake. Smart Materials and Structures, 25(11), 115015.
38.Wu, J., Li, H., Jiang, X., & Yao, J. (2018). Design, simulation and testing of a novel radial multi-pole multi-layer magnetorheological brake. Smart Materials and Structures, 27(2), 025016.
39.Shah, K., & Choi, S. B. (2014). A new magnetorheological mount featured by changeable damping gaps using a moved-plate valve structure. Smart materials and structures, 23(12), 125022.
40.Gołdasz, J., & Sapiński, B. (2011). Modeling of magnetorheological mounts in various operation modes. acta mechanica et automatica, 5, 29-40.
41.Hong, S. R., & Choi, S. B. (2005). Vibration control of a structural system using magneto-rheological fluid mount. Journal of intelligent material systems and structures, 16(11-12), 931-936.
42.Grunwald, A., & Olabi, A. G. (2008). Design of magneto-rheological (MR) valve. Sensors and Actuators A: Physical, 148(1), 211-223.
43.Shiao, Y., & Cheng, W. H. (2016). Performance investigation of an SI engine with variable valve timing and lift based on a magneto-rheological valve. Transactions of the Canadian Society for Mechanical Engineering, 40(5), 749-760.
44.Kikuchi, T., Ikeda, K., Otsuki, K., Kakehashi, T., & Furusho, J. (2009, February). Compact MR fluid clutch device for human-friendly actuator. In Journal of Physics: Conference Series (Vol. 149, No. 1, p. 012059).
45.Blake, J., & Gurocak, H. B. (2009). Haptic glove with MR brakes for virtual reality. IEEE/ASME Transactions On Mechatronics, 14(5), 606-615.
46.Nguyen, Q. H., et al. "Optimal design of a new 3D haptic gripper for telemanipulation, featuring magnetorheological fluid brakes." Smart materials and structures 22.1 (2012): 015009.
47.Winter, S. H., & Bouzit, M. (2007). Use of magnetorheological fluid in a force feedback glove. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15(1), 2-8.
48.Han, Y. M., Noh, K. W., Lee, Y. S., & Choi, S. B. (2010). A magnetorheological haptic cue accelerator for manual transmission vehicles. Smart materials and structures, 19(7), 075016.
49.Han, Y. M., Kim, C. J., & Choi, S. B. (2008). A magnetorheological fluid-based multifunctional haptic device for vehicular instrument controls. Smart materials and structures, 18(1), 015002.
50.Ahmadkhanlou, F., Washington, G. N., Bechtel, S. E., & Wang, Y. (2006, March). Magnetorheological fluid based automotive steer-by-wire systems. In Smart Structures and Materials 2006: Industrial and Commercial Applications of Smart Structures Technologies (Vol. 6171, p. 61710I). International Society for Optics and Photonics.
51.Pierik, R.J., and Burkhard, J.F. (2000). Design and development of a mechanical variable valve actuation system. SAE Technical Paper.0148-7191.
52.Flierl, R., and Klüting, M. (2000). The third generation of valvetrains-new fully variable valvetrains for throttle-free load control. SAE Technical Paper. 0148-7191.
53.Sun, Z., and He, X. (2007). Development and control of electro-hydraulic fully flexible valve actuation system for diesel combustion research. SAE Technical Paper. 0148-7191.
54.Shiao, Y., and Dat, L.V. (2013). A New Electromagnetic Valve Train with PM/EM Actuator in SI Engines. Transactions of the Canadian Society for Mechanical Engineering, Vol.37:3, 787-796.
55. Bernard, L., Ferrari, A., Micelli, D., Perpttp, A.,Rinolfi,R., and Vattaneo, F. (2009). Electro-hydraulic valve control with multiair technology. MTZ worldwide. 70:12, 4-10.
56.Dong, S., Lu, K. Q., Sun, J. Q., & Rudolph, K. (2005). Rehabilitation device with variable resistance and intelligent control. Medical engineering & physics, 27(3), 249-255.
57.Shiao, Y., Chang, T. Y., & Lai, C. H. (2017). Gait identification using inertial sensors for control of adaptive knee orthosis device. Sensors and Materials, 29(11), 1657-1665.
58.Flierl, R., & Klüting, M. (2000). The third generation of valvetrains-new fully variable valvetrains for throttle-free load control (No. 2000-01-1227). SAE Technical Paper.
59.Hosaka, T., & Hamazaki, M. (1991). Development of the variable valve timing and lift (VTEC) engine for the Honda NSX (No. 910008). SAE Technical Paper.
60.Brüstle, C., & Schwarzenthal, D. (2001). Variocam plus-a highlight of the porsche 911 turbo engine (No. 2001-01-0245). SAE Technical Paper.
61.Rossa, C., Jaegy, A., Micaelli, A., & Lozada, J. (2014). Development of a multilayered wide-ranged torque magnetorheological brake. Smart Materials and Structures, 23(2), 025028.
62.Senkal, D., & Gurocak, H. (2010). Serpentine flux path for high torque MRF brakes in haptics applications. Mechatronics, 20(3), 377-383.
63.Mazlan, B., and Saiful A. (2008) The behaviour of magnetorheological fluids in squeeze mode. PhD thesis, Dublin City University.
64.Alireza, F. (2007). Magneto-rheological fluid rotary brake used in wheeled vehicles. Master’s thesis, Nanyang Technological University, Singapore.
65.Hosaka, T., & Hamazaki, M. (1991). Development of the variable valve timing and lift (VTEC) engine for the Honda NSX (No. 910008). SAE Technical Paper.
66.Brüstle, C., & Schwarzenthal, D. (2001). Variocam plus-a highlight of the porsche 911 turbo engine (No. 2001-01-0245). SAE Technical Paper.
67.Shiao, Y., & Dat, L. V. (2012). Efficiency improvement for an unthrottled SI engine at part load. International Journal of Automotive Technology, 13(6), 885-893.
68.Shiao, Y., Chang, T. Y., & Lai, C. H. (2017). Gait identification using inertial sensors for control of adaptive knee orthosis device. Sensors and Materials, 29(11), 1657-1665.
69.Nicolaides, A. (1996). Electrical and Electronic Principles II, 2nd Ed., PASS Publications, London.
70. Patil, S. R., Powar, K. P., & Sawant, S. M. (2016). Thermal analysis of magnetorheological brake for automotive application. Applied Thermal Engineering, 98, 238-245.


電子全文 電子全文(網際網路公開日期:20250730)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top