跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.248) 您好!臺灣時間:2022/11/27 01:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳昱均
研究生(外文):CHEN, YU-CHUN
論文名稱:機櫃內流場及溫度分佈之數值研究
論文名稱(外文):Numerical Study of Airflow and Temperature Distributions in Single Rack
指導教授:顏維謀顏維謀引用關係
指導教授(外文):YAN, WEI-MON
口試委員:顏維謀羅安成李弘毅李汶墾楊添福
口試委員(外文):YAN, WEI-MONRUO, AN-CHENGLI, HONG-YILI, WUN-KENYANG, TIAN-FU
口試日期:2020-06-05
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:120
中文關鍵詞:計算流體力學數據中心機櫃流場冷氣流溫度分佈
外文關鍵詞:Computational fluid dynamics (CFD)Data centerRackFlow fieldCold flowTemperature distribution
相關次數:
  • 被引用被引用:0
  • 點閱點閱:126
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
即將邁入5G的世代,數據中心的運算效率與計算量變成關鍵,而龐大的運算所衍生之散熱問題,將會是值得探討的議題;因此,本文針對數據中心內部之機櫃流場,作為主要的研究對象,並利用四種不同的通道組合於機櫃模型中,以空氣製冷的方式,模擬模型的數值與物理現象。本研究使用計算流體力學軟體(CFD)預測不同流道設計下的溫度趨勢。分析結果顯示,相同流量下,Case 2的通道尺寸變化與0.45 m的高架地板深度,將有助於機櫃入口的流量均勻分佈,且在後門側之浮力效應較不影響於機櫃內部的溫度變化;然而,流量效應下,Model 1與Model 4之標準流量(1.44 m^3/s)所帶來的散熱結果,優於Model 2之低流量(0.72 m^3/s)狀態,本研究最後再利用回風溫度指標(RTI)判別能源上的使用情形,發現Model 1與Model 4較為適合作為機櫃的散熱策略;最後,利用前風扇的安裝策略,強迫流體抽入於機櫃內部的通道內,將帶來較佳的散熱效果與流量分佈。
With the advent of the 5th generation mobile networks, the internal computing of data centers is very important. Because the server's calculations cause big thermal problems, this thesis focuses on the thermal analysis of the rack in the data center. In this work, the airflow and temperature distributions in single rack are examined numerically in details. The CFD software, ANSYS Fluent, is used to simulate airflow field and temperature profile. The main target is focused on the heat removal of servers in the rack under different operating conditions and designs. The predicted results show that the Case 2’s size and 0.45 m of raised floor depth would help to distribute the airflow uniformity in the same rate. However, buoyancy effect does not affect the temperature variations in the rack. Secondly, Model 1 and Model 4’s standard flow rate (1.44 m3/s) provide better cooling efficiency than Model 2's low flow rate (0.72 m3/s). Therefore, Model 1 and Model 4 are more suitable for rack cooling strategy. Finally, adding the front fans can provide better heat removal and flow field in the rack.
目錄

摘要 I
ABSTRACT II
誌謝 IV
目錄 VI
表目錄 IX
圖目錄 X
第一章 緒論
1.1 前言 1
1.2 文獻回顧 3
1.2.1 長距離冷卻系統 4
1.2.2 短距離冷卻系統 6
1.2.3 多孔瓷磚、旁路與洩漏 7
1.2.4 機櫃案例 8
1.3 研究動機 13
1.4 研究目的 13
第二章 模型概述
2.1 模型介紹 14
2.2 模型參數 19
2.2.1 等效風扇 22
2.2.2 計算設備 26
第三章 研究方法
3.1 理論模式 27
3.2 統御方程式 28
3.2.1 紊流模式 29
3.2.2 浮力模式 30
3.3 邊界條件 31
3.3.1 紊流介面 31
3.3.2 熱傳介面 34
3.4 多孔性區域 36
3.4.1 多孔性區域之動量方程式 37
3.5 風扇計算 38
3.6 數值方法 40
3.6.1 壓力-速度耦合關係 41
3.6.2 梯度離散方法 42
3.6.3 壓力離散方法 43
3.6.4 對流-擴散離散方程式 43
3.7 數據中心指標 44
第四章 模型驗證
4.1幾何模型 46
4.1.1 邊界條件設定 48
4.2 網格建立與測試 50
4.2.1 幾何尺寸增加對溫度趨勢影響 54
4.2.2 監測溫度點測試 57
4.3 再現結果 60
第五章 結果與討論
5.1 通道與流場關係 61
5.2 浮力效應影響 64
5.3 幾何流量變化與指標分析 67
5.3.1 流量效應 67
5.3.2 回風溫度指標 87
5.3.3 機櫃入口溫度指標 88
5.4 模型的改良與設計 89
5.4.1 增加擋板 89
5.4.2 前門側模型設計 97
5.4.3 增加風扇 104
第六章 結論與建議
6.1 結論 112
6.2 建議 113
參考文獻 114
個人著作 118
符號說明 119


參考文獻
[1]DataReportal, 2019, “Global digital overview.” https://datareportal.com/reports/digital- 2019-global-digital-overview
[2]P. Corcoran, A. Andrae, 2013, “Emerging trends in electricity consumption for consumer ICT,” National University of Ireland, Galway, Ireland.
[3]P. Johnson, T. Marker, 2009, “Data center energy efficiency product profile,” Equipment Energy Efficiency Committee.
[4]J. Ni, X. Bai, 2017, “A review of air conditioning energy performance in data centers,” Renewable and Sustainable Energy Reviews, vol. 67, pp. 625-640.
[5]W.X. Chu, C.C. Wang, 2019, “A review on airflow management in data centers,” Applied Energy, vol. 240, pp. 84-119.
[6]Y. Fulpagare, A. Bhargav, 2015, “Advances in data center thermal management,” Renewable and Sustainable Energy Reviews, vol.43, pp. 981-996.
[7]N. Rasmussen, 2005, “Air distribution architecture options for mission critical facilities,” American Power Conversion, white paper #55.
[8]S.A. Nada, M.A. Said, 2017, “Effect of CRAC units layout on thermal management of data center,” Applied Thermal Engineering, vol. 118, pp. 339-344.
[9]W.X. Chu, C.S. Hsu, Y.Y. Tsui, C.C.Wang, 2019, “Experimental investigation on thermal management for small container data center,” Journal of Building Engineering, vol. 21, pp. 317-327.
[10]42U, “Solutions for the next generation data center.” https://www.42u.com/data-center- containment.htm
[11]V. Sundaralingam, V.K. Arghode, Y. Joshi, 2013, “Experimental characterization of cold aisle containment for data centers,” 29th Annual IEEE semiconductor thermal measurement and management symposium(SEMI-THERM), San Jose, CA, MAR 17–21.
[12]V.K. Arghode, V. Sundaralingam, Y. Joshi, W. Phelps, 2013, “Thermal characteristics of open and contained data center cold aisle,” Journal of Heat Transfer, vol.135:061901.
[13]V.K. Arghode, V. Sundaralingam, Y. Joshi, W. Phelps, 2014, “Experimental characterization of various cold aisle containment configurations for data centers,” Journal of Electronic Packaging, vol.137:011007.
[14]A. Almaneea, H. Thompson, J. Summers, N. Kapur, 2014, “Cooling system analysis for a data center using liquid immersed servers,” International Journal of Thermal Technologies, vol.3, pp. 200–207.
[15]T.Y. Gao, M. Valle, A. Ortega, B.G. Sammakia, 2015, “Numerical and experimental characterization of the transient effectiveness of a water to air heat exchanger for data center cooling systems,” ASME international technical conference and exhibition on packaging and integration of electronic and photonic microsystems (InterPACK), San Francisco, CA, JUL 06–09.
[16]T.Y. Gao, J. Geer, B. Sammakia, 2015, “Review and analysis of cross flow heat exchanger transient modeling for flow rate and temperature variations,” Journal of Thermal Science and Engineering Applications, vol.7:10.
[17]T.Y. Gao, B.G. Sammakia, J. Geer, A. Ortega, R. Schmidt, 2014, “Dynamic analysis of cross flow heat exchangers in data centers using transient effectiveness method,” IEEE Transactions on Components and Packaging Technologies, vol. 4, pp. 1925–1935.
[18]T.Y. Gao, J. Geer, B.G. Sammakia, 2014, “Nonuniform temperature boundary condition effects on data center cross flow heat exchanger dynamic performance,” International Journal of Heat Mass Transfer, vol. 79, pp. 1048–1058.
[19]H. Tian, Z. He, Z. Li, 2015, “A combined cooling solution for high heat density data centers usingmulti-stage heat pipe loops,” Energy and Buildings, vol. 94, pp. 177–188.
[20]C. Dang, L. Jia, Q. Lu, 2017, “Investigation on thermal design of a rack with the pulsating heat pipe for cooling CPUs,” Applied Thermal Engineering, vol. 110, pp. 390–398.
[21]H.S. Erden, M. Koz, M.T. Yildirim, H.E. Khalifa, 2017, “Optimization of enclosed aisle data centers with induced CRAH bypass,” IEEE Transactions on Components and Packaging Technologies, vol. 7, pp. 1981–1989.
[22]H.S. Erden, M. Koz, M.T. Yildirim, H.E. Khalifa, 2017, “Experimental demonstration and flow network model verification of induced CRAH bypass for cooling optimization of enclosed-aisle data centers,” IEEE Transactions on Components and Packaging Technologies, vol. 7, pp. 1795–1803.
[23]L. Phan, B. Hu, C.X. Lin, 2019, “An evaluation of turbulence and tile models at server rack level for data centers,” Building and Environment, vol. 155, pp. 421-435.
[24]S.A. Nada, M.A. Said, 2017, “Comprehensive study on the effects of plenum depths on air flow and thermal managements in data centers,” Journal of Thermal Sciences, vol. 122, pp. 302-312.
[25]T.J. Breen, E.J. Walsh, J. Punch, A.J. Shah, C.E. Bash, B. Rubenstein, et al., 2012, “From chip to cooling tower data center modeling: influence of air-stream containment on operating efficiency,” Journal of Electronic Packaging, vol.134:041006.
[26]M. Tatchell-Evans, N. Kapur, J. Summers, H. Thompson, D. Oldham, 2017, “An experimental and theoretical investigation of the extent of bypass air within data centres employing aisle containment, and its impact on power consumption,” Apply Energy, vol.186, pp. 457–469.
[27]R. Ghosh, V. Sundaralingam, Y. Joshi, 2012, “Effect of rack server population on temperatures in data centers,” Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, San Diego, CA, USA, May 30-June 1.
[28]B. Nagendran, S. Nagaraj, J. Fernandes, R. Eiland, D. Agonafer, V. Mulay, 2014, “Improving cooling efficiency of servers by replacing smaller chassis enclosed fans with larger rack-mount Fans,” IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Orlando, FL, USA, May 27-30.
[29]Z. Song, 2016, “Thermal performance of a contained data center with fan-assisted perforations,” Applied Thermal Engineering, vol. 102, pp. 1175-1184.
[30]X. Yuan, X. Zhou, J. Liu, Y. Wang, X. Xua, 2019, “Experimental and numerical investigation of an airflow management system in data center with lower-side terminal baffles for servers,” Building and Environment, vol. 155, pp. 308–319.
[31]D.V. Sheth, S.K. Saha, 2019, “Numerical study of thermal management of data center using porous medium approach,” Journal of Building Engineering, vol. 22, pp. 200-215.
[32]Y.Fulpagare, A. Bhargav, Y. Joshi, 2019, “Dynamic thermal characterization of raised floor plenum data centers: Experiments and CFD,” Journal of Building Engineering, vol. 25: 100783.
[33]E. Wibron, A. L Ljung, T.S. Lundström, 2018, “Computational fluid dynamics modelling and validating experiments of airflow in a data center,” Energies 11(3), 644;https://doi.org/10.3390/en11030644.
[34]B. E. Launder, D. B. Spalding, 1974, “The numerical computation of turbulent flows,” Computer Methods in Applied Mechanics and Engineering, vol. 3, pp. 269–289.
[35]ANSYS Inc, 2018, “ANSYS FLUENT theory guide, Release 19.1, USA.
[36]KKNews, “電子散熱|機箱系統設計的風扇如何選擇?.” https://kknews.cc/zh-tw/digital/3v89ey8.html
[37]J. Ni, B. Jin, Bo Zhang, X. Wang, 2017, “Simulation of thermal distribution and airflow for efficient energy consumption in a small data centers,” Sustainability, 9, 664; doi:10.3390/su9040664.

電子全文 電子全文(網際網路公開日期:20250610)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊