跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/26 02:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張景閎
研究生(外文):CHANG, CHING-HUNG
論文名稱:非共沸混合冷媒滴淋蒸發熱傳分析
論文名稱(外文):Heat Transfer Analysis of Falling Film Evaporation in Zeotropic Refrigerant
指導教授:簡良翰簡良翰引用關係
指導教授(外文):CHIEN, LIANG-HAN
口試委員:簡良翰楊安石施陽正洪國書廖文榮
口試委員(外文):CHIEN, LIANG-HANYANG, AN-SHIKSHIH, YANG-CHENGHUNG, KUO-SHULIAO, WUN-RONG
口試日期:2020-06-15
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:140
中文關鍵詞:非共沸混合冷媒薄膜蒸發池沸騰鰭片管滑動溫度
外文關鍵詞:Non-azeotropic Refrigerantsfalling film evaporationpool boilingtemperature glide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:198
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本研究以光滑測試管與鰭片測試管在混合的非共沸冷媒25% R-152a/75% R-245fa與75% R-152a/25% R-245fa 混合比例的薄膜蒸發熱傳,並與純冷媒R-152a和R-245fa作熱傳性能比較。將三根測試管以上下垂直排列水平置放於測試腔體中。測試結果說明,光滑管的熱傳性能介於純冷媒R-152a與R-245fa之間,鰭片測試管熱傳性能低於純冷媒R-245fa。光滑管在混合冷媒 25% R-152a/75% R-245fa 的熱傳分佈帶比75% R-152a/25% R-245fa 分佈帶寬。造成這種情況的可能原因是混合比例導致了溫度滑移的差異。混合冷媒的熱傳性能高於純R-245fa冷媒。而混合冷媒用於鰭片測試管的熱傳低於純冷媒R-245fa的熱傳性能。由實驗結果分析,混合冷媒測試於光滑管的性能可以由兩種純冷媒冷媒物性與熱傳性能的內插法來評估;而混合冷媒測試於鰭片管的性能低於兩種純冷媒。混合流體的沸騰熱傳係數實測值略低於純冷媒,以外插法推算值,此結果與文獻一致;本研究首度發現:混合流體滴淋蒸發的實際熱傳係數與內插理想值比率大於沸騰時之比率;可能是受滴淋與沸騰過程的濃度變化幅度差異所影響,而有利用高揮發性流體蒸發。
In this study, the plain tubes and the fin tubes were tested in pure R-152a, pure R-245fa, the non-azeotropic refrigerants 25% R-152a/75% R-245fa and 75% R-152a/25% R-245fa. The falling film evaporates heat transfer and compares it with pure refrigerants R-152a and R-245fa. Three test tubes are placeed horizontally and aligned vertically. The test results show that the heat transfer performance of the plain tube is between the pure refrigerant R-152a and R-245fa, and the heat transfer performance of the finned tube is lower than that of the pure refrigerant R-245fa. The change in heat transfer is not linearly proportional to the mixing ratio of the refrigerant. The heat transfer coefficient of the plain tube of 75% R-152a/25% R-245fa varied in a wider range as compared with that in the mixed refrigerant 25% R-152a/75% R-245fa. The possible reason for this is that the mixing ratio causes the difference in temperature glide. The heat transfer performance of the smooth tube in the mixed refrigerant is higher than that of pure R-245fa. However, the heat transfer performance of the finned tube in the mixed refrigerant is lower than that of the pure refrigerant R-245fa. According to the analysis of the experimental results, the performance of the mixed refrigerant test on the plain tube can be evaluated by interpolating the properties of the two refrigerants. Similar to the finding in the lieterature, the test result of the boiling heat transfer of the mixed refrigerants are lower than the values interpolated from the pure fluids. This study finds that the ratio of the test result of falling film evaporation heat transfer and the interpolated value in the mixed refrigerants is higher than that of boiling heat transfer. Possible reason is that the concentration of the mixture in falling liquid film varies more significantly than that in the pool of boiling. Hence, the evaporation of the more bolitile fluid is favorable.
摘 要 i
ABSTRACT ii
誌 謝 iv
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
第二章 文獻回顧 8
2.1 混合冷媒的發展 8
2.2 共沸混合冷媒與非共沸混合冷媒 8
2.3 熱傳管之管陣配置與薄膜蒸發熱傳 10
2.4 熱傳管結構表面之沸騰原理 11
2.4.1 商用熱傳管之結構表面 11
2.4.2 氣孔大小與氣孔袋口效應影響 12
2.4.3 表面下渠道之影響 14
2.4.4 結構表面之核沸騰理論分析 15
2.4.5 冷媒與蒸發管實測研究 17
2.5 工作流體性質與熱傳係數之關係 25
2.6 滴淋薄膜與蒸發 28
2.6.1 水平管外滴淋薄膜蒸發 27
2.6.2 薄膜蒸發之表面結構 29
2.6.3 滴淋薄膜流場觀察 31
第三章 實驗設備與方法 34
3.1 實驗系統 34
3.1.1 測試腔體 35
3.1.2 冷卻系統 37
3.1.3 滴淋分配管 38
3.1.4 測試管 39
3.1.5 探漏、抽真空、站壓、工作流體充填、排氣 40
3.1.6 資料擷取 41
3.2 實驗參數設定 42
3.2.1 實驗參數 42
3.2.2 測試管表面參數 48
3.3 實驗器具介紹 49
3.3.1 細束型熱電耦 49
3.3.2 壓力傳訊器 49
3.3.3 流量計 50
3.3.4 微齒輪泵 50
3.3.5 自耦變壓器 50
3.3.6 多功能電錶 50
3.3.7 真空泵 50
3.3.8 高精度電子計重器 50
3.4 實驗步驟 51
3.5 實驗數據分析 54
3.5.1 熱通量計算 54
3.5.2 測試管表面壁溫計算 54
3.5.3 熱傳係數計算 54
3.5.4 薄膜雷諾數計算 55
3.6 誤差分析 57
3.6.1 溫度校正 57
3.6.2 熱傳係數之誤差分析 58
第四章 實驗結果與討論 61
4.1 光滑管之熱傳性能比較分析 61
4.1.1 冷媒 R-152a 在光滑管之實驗量測 61
4.1.2 冷媒 R-245fa 在光滑管之實驗量測 63
4.1.3 混合冷媒25% R-152a/75% R-245fa 在光滑管之實驗量測 65
4.1.4 混合冷媒75% R-152a/25% R-245fa 在光滑管之實驗量測 68
4.1.5 光滑管之結果與討論 70
4.2 鰭片管之熱傳性能比較分析 74
4.2.1 冷媒 R-152a 在鰭片管之實驗量測 74
4.2.2 冷媒 R-245fa 在鰭片管之實驗量測 76
4.2.3 混合冷媒25% R-152a/75% R-245fa 在鰭片管之實驗量測 78
4.2.4 混合冷媒75% R-152a/25% R-245fa 在鰭片管之實驗量測 81
4.2.5 鰭片管之結果與討論 84
4.3 光滑管與鰭片管之熱傳性能比較分析 87
4.4 混合冷媒的物性影響比較分析 90
4.5 實驗與文獻比對及混合冷媒討論 95
4.5.1 實驗與文獻比對 95
4.5.2 混合冷媒討論 101
4.6 實驗數據可信賴度與實驗再現性分析 105
第五章 結論 108
參考文獻 109
附錄一 符號說明 114
附錄二 實驗照片 116

[ 1 ] "The Montreal Protocol on Substances that Deplete the Ozone Layer, "1989, ISBN: 92-807-1888-6
[ 2 ] 行政院環保署,⸢ 溫室氣體減量及管理法 ⸥,民國104年 (2015)
[ 3 ] 簡良翰、陳冠杰,⸢ 新冷媒之發展與有機朗肯循環之應用⸥,冷凍空調技師季刊,第48期”,民國106年(2017),pp.73-84
[ 4 ] Dang, C., Jia, L., Peng, Q., Huang, Q., and Zhang, X., "Experimental and analytical study on nucleate pool boiling heat transfer of R134a/R245fa zeotropic mixtures, " International Journal of Heat and Mass Transfer, Vol. 119, 2018, pp. 508–522.
[ 5 ] Sarbu, I., "A review on substitution strategy of non-ecological refrigerants from vapour compression-based refrigeration, air-conditioning and heat pump systems, " International Journal of Refrigeration, Vol. 46, 2014, pp. 123-141.
[ 6 ] Dang, C., Jia, L., Xu, M., Huang, Q., Peng, Q., "Experimental study on flow boiling characteristics of pure refrigerant (R134a) and zeotropic mixture (R407C) in a rectangular micro-channel, " Int. J. Heat Mass Transf., Vol. 104, 2017, pp. 351–361.
[ 7 ] Saier et al., "Y and T-Finned Tubes and Methods and Apparatus for Their Making" U.S. Patent 4,168,618., 1979
[ 8 ] Fujie et al., " Heat Transfer Pipe," U.S. Patent 4,044,797, assigned to Hitachi Ltd., 1977.
[ 9 ] Arai et al., "Morphological changes in yeasts as a result of the action of 5-fluorocytosine," Antimicrobial Agents and Chemotherapy, 12, 1997, 255
[ 10 ] Jung, D., An, K., and Park, J., "Nucleate boiling heat transfer coefficients of HCFC22, HFC134a, HFC125, and HFC32 on various enhanced tubes, " International Journal of Refrigeration, Vol. 27, No. 2, 2004, pp. 202-206.
[ 11 ] Moeykens, S. and Pate, M. B., "Spray evaporation heat transfer performance of R-134a on plain tubes," ASHRAE Transactions, Vol. 100, No. 2, 1994, pp. 173-184.
[ 12 ] Moeykens, S., Kelly, J. E. and Pate, M. B., "Spray evaporation heat transfer performance of R-123 in tube bundles, " ASHRAE Transactions, Vol. 102, No. 2, 1996, pp. 259-272.
[ 13 ] Chang, T. B. and Chiou, J. S., "Spray evaporation heat transfer of R-141b on a horizontal tube bundle," International journal of Heat and Mass Transfer, Vol. 42, 1999, pp. 1467-1478.
[ 14 ] Chien, L. H. and Cheng, H. C., "A predictive model of falling film evaporation with bubble nucleation on horizontal tubes," International Journal of HVAC&R Research, Vol. 12, 2006, pp. 69-87.
[ 15 ] Ribatski, G. and Jacobi, A. M., "Falling film evaporation on horizontal tubes - a critical review," International Journal of Refrigeration, Vol. 28, 2005, pp. 635-653.
[ 16 ] Moeykens. S. and Pate, M. B., "Spray evaporation heat transfer performance of R-134a on plain tubes," ASHRAE Transactions, Vol. 100, No. 2, 1994, pp. 173-184.
[ 17 ] Moeykens. S. and Pate, M. B., "Spray evaporation heat transfer performance of R-123 in tube bundles," ASHRAE Transactions, Vol. 102, No. 2, 1996, pp. 259-272.
[ 18 ] Chang, T. B., Chiou, J. S., "Spray evaporation heat transfer of R-141b on a horizontal tube bundle," International journal of Heat and Mass Transfer, Vol. 42, 1998, pp. 1467-1478.
[ 19 ] Fujita, Y., Tsutsui, M., Zhou, Z. Z., "Evaporation heat transfer of falling films on horizontal tube - part 1. analytical study," Heat Transfer-Japanese Research, Vol. 24, 1995, pp. 1-16.
[ 20 ] Fujita, Y., Tsutsui, M., Zhou, Z. Z., "Evaporation heat transfer of falling films on horizontal tube - part 2. experimental study," Heat Transfer-Japanese Research, Vol. 24, 1995, pp. 17-31.
[ 21 ] Moeykens, S., Pate, M. B., "The effects of nozzle height and orifice size on spray evaporation heat transfer performance for a low-finned. triangular-pitch tube bundles with R-134a," ASHRAE Transactions, Vol. 101, No. 2, 1995, pp. 420-433.
[ 22 ] Moeykens, S., Pate, M. B., "Effect of lubricant on spray evaporation heat transfer performance of R-134a and R-22 in tube bundles," ASHRAE Transactions, Vol. 102, No. 1, 1996, pp. 410-426.
[ 23 ] Moeykens, S., Newton, B. J., and Pate, M. B., "Effects of surface enhancement. film-feed supply rate. and bundle geometry on spray evaporation heat transfer performance," ASHRAE Transactions, Vol. 101, No. 2, 1995, pp. 408-41.
[ 24 ] Chien, L-H., Cheng, H.-C., "A predictive model of falling film evaporation with bubble nucleation on horizontal tubes, " International Journal of HVAC&R Research, Vol. 12, 2006, pp. 69-87.
[ 25 ] Fujita, Y. and Tsursui, M., "Experimental investigation of falling film evaporation on horizontal tubes,” Heat Transfer-Japanese Research, Vol. 27, 1998, pp. 609-618.
[ 26 ] Roques, J. F. and Thome, J. R., "Falling films on arrays of horizontal tubes with R-134a, part II: flow visualization. onset of dryout, and heat transfer predictions, " Heat Transfer Engineering,”Vol. 28, 2007, pp. 415-434.
[ 27 ] Fujikaka, J., "Heat Transfer Tube for Use in Boiling Type Heat Exchangers and Method of Producing the Same, " U.S. Patent 4,216,826., 1980.
[ 28 ] Webb, R. L., "Nucleate Boiling on Porous Coated Surfaces, " Heat Transfer Engineering, Vol. 4 No. 3-4, 1983, pp. 71–82.
[ 29 ] Chien, L. H., and Webb, R. L., "Parametric studies of nucleate pool boiling on structured surfaces, part I: Effect of tunnel dimensions," Journal of Heat Transfer, Vol. 120, 1998, pp. 1042-1048.
[ 30 ] Chien, L. H., and Webb, R. L., "Parametric studies of nucleate pool boiling on structured surfaces, part II: Effect of pore diameter and pore pitch," Journal of Heat Transfer, Vol. 120, 1998, pp. 1049-1054.
[ 31 ] Chien, L. H., and Webb, R. L., "Measurement of bubble dynamics on an enhanced boiling surface, " Experimental Thermal and Fluid Science, Vol. 16, 1998, pp. 177-186
[ 32 ] Chien, L. H., and Webb, R. L., "A nucleate boiling model for structured enhanced surfaces, " International Journal of Heat and Mass Transfer, Vol. 41, No. 14, 1998, pp. 2183-2195.
[ 33 ] Chien, L. H., and Webb, R. L., "Visualization of Pool Boiling on Enhanced Surfaces, " Experimental Thermal and Fluid Science, No. 16, 1998, pp. 332-341.
[ 34 ] Das, A. K., Das, P. K., Bhattacharyya, S. and Saha, P., "Nucleate boiling heat transfer from a structured surface-Effect of liquid intake, " Int. Journal of Heat & Mass Transfer, Vol 50, 2007, pp. 1577-1591.
[ 35 ] Thors et al., "Heat transfer tubes and methods of fabrication thereof, " U.S. Patent 5,697,430, 1997.
[ 36] Webb, R. L. and Pais, C., "Nucleate Pool Boiling Data for Five Refrigerants on Plain, Integral-Fin and Enhanced Tube Geometries, " Int. Journal of Heat & Mass Transfer, Vol. 35, No 8, 1992, pp. 1893-1904.
[ 37 ] Cooper, M.G., "Saturated nuclear pool boiling – a simple correlation, " International Chemical Engineering Symposium Series, Vol. 86, 1984, pp. 785-793.
[ 38] Ribatski, G. and Jabardo, S. J. M., "Experimental study of nucleate boiling of halocarbon refrigerants on cylindrical surfaces, " International Journal of Heat and Mass Transfer, Vol. 46, 2003, pp. 4439–4451.
[ 39] Gorenflo, D., Baumhögger, E. and Herres, G., " Prediction methods for pool boiling heat transfer:A state-of-the-art review, " international journal of refrigeration, Vol. 43, 2014, pp. 203-226
[ 40 ] Tatara, R. A. and Payvar, P., "Pool boiling of pure R134a from a single Turbo-BII-HP tube, " International Journal of Heat and Mass Transfer, Vol. 43, 2000, pp. 2233-2236.
[ 41 ] Jung, D., An, K. and Park, J., "Nucleate boiling heat transfer coefficients of HCFC22, HFC134a, HFC125, and HFC32 on various enhanced tubes , " International Journal of Refrigeration, Vol. 27, 2004, pp. 202-206.
[ 42 ] Ribatski, G. and Thome, J. R., "Nucleate boiling heat transfer of R134a on enhanced tube, " Applied Thermal Engineering, Vol. 26, 2006, pp. 1018-1031.
[ 43 ] Thors et al., "Heat transfer tubes, including methods of fabrication and use thereof, " U.S. Patent 7,178,361 B2., 2007.
[ 44 ] Kim, N. H. and Choi, K. K., "Nucleate pool boiling on structured enhanced tubes having pores with connecting gaps , " International Journal of Heat and Mass Transfer, Vol, 44, 2001, pp. 17-28.
[ 45 ] Nagata et al., "Comparative assessment of condensation and pool boiling heat transfer on horizontal plain single tubes for R1234ze(E), R1234ze(Z), and R1233zd(E), " International Journal of Refrigeration, Vol. 63, 2016, pp. 157–170.
[ 46 ] Desideri et al., "An experimental analysis of flow boiling and pressure drop in a brazed plate heat exchanger for organic Rankine cycle power systems, " International Journal of Heat and Mass Transfer, Vol. 113, 2017, pp. 6–21.
[ 47 ] Longo et al., "Saturated flow boiling of HFC134a and its low GWP substitute HFO1234ze(E) insidea 4mm horizontal smooth tube, " international journal of refrigeration, Vol. 64, 2016, pp. 32–39.
[ 48 ] Lorenz, J. J., and Yung, D., "A Note on Combined Boiling and Evaporation of Liquid Films on Horizontal Tubes," Transactions of the ASME, Vol. 101, 1979, pp. 178-180.
[ 49 ] Chun, K. R., and Seban, R. A., "Heat Transfer to Evaporating Liquid Films," Journal of Heat Transfer, Vol. 93, 1971, pp. 391-396.
[ 50 ] Chyu, M. C., and Bergles, A. E., "An Analytical and Experimental Study of Falling-Film Evaporation on a Horizontal Tube," Journal of Heat Transfer, Vol. 109, 1987, pp. 983-990.
[ 51 ] Mu X. S., Shen S. Q. ,Yang Y and Liu X. H., "Experimental study of falling film evaporation heat transfer coefficient on horizontal tube, " Desalination and Water Treatment, 50:1-3, 2012, pp. 310-316.
[ 52 ] Moeykens, S. A., and Pate, M. B., "Spray Evaporation Heat Transfer of R-134A on Plain Tubes," ASHRAE TRANSACTIONS, Vol. 100, 1994, pp. 173-184.
[ 53 ] Liu, Z. H., and Yi, J., "Enhanced evaporation heat transfer of water and R-11 falling film with the roll-worked enhanced tube bundle," Experimental Thermal and Fluid Science, Vol. 25, 2001, pp. 447-455.
[ 54 ] Roques, J. F., Dupont, V., and Thome, J. R., "Falling Film Transition on Plain and Enhanced Tubes," Journal of Heat Transfer, Vol. 124, 2002, pp. 491-499.
[ 55 ] Fujita, Y., and Tsutsui, M., "Evaporation Heat Transfer of Falling Films on Horizontal Tube-Part2, Experimental Study," Heat Transfer-Japanese Research, Vol. 24, No. 1, 1995, pp. 17-31.
[ 56 ] Kamiaka et al., "Vapor-liquid equilibrium measurements for binary mixtures of R1234yf with R32, R125, and R134a, " International Journal of Refrigeration, Vol. 36, 2013, pp. 965-971.
[ 57 ] Chien, Liang-Han. and Tsai, Yue-Lin., "An experimental study of pool boiling and falling film vaporization on horizontal tubes in R-245fa, " 2011, pp. 4044-4054.
[ 58 ] Holman, J. P., "Experimental methods for engineers, " McGraw-Hill, Inc., 1994,
[ 59 ] 潘俊宏,冷媒R-152a應用於滴淋式蒸發器之熱傳性能研究,碩士論文,國立台北科技大學能源與冷凍空調研究所,臺北,2014。
[ 60 ] 蔡岳霖,含油冷媒R-245fa應用於滴淋式蒸發器之熱傳性能研究,碩士論文,國立台北科技大學能源與冷凍空調研究所,臺北,2003。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊