|
1. Wentao Yu, Wenxu Shang, Peng Tan, Bin Chen, Zhen Wu, Haoran Xu, Zongping Shao, Meilin Liu and Meng Ni, “Toward a new generation of low cost, efficient, and durable metal–air flow batteries”, Royal Society of Chemistry, Journal of Materials Chemistry A 2019. 2. TODAY IN ENERGY. (https://www.eia.gov/todayinenergy/detail.php?id=32912) 3. The global electric vehicle market in 2020: statistics & forecasts. (https://www.virta.global/global-electric-vehicle-market) 4. Zinc-air battery. (https://en.wikipedia.org/wiki/Zinc%E2%80%93air_battery) 5. Jing Fu, Zachary Paul Cano, Moon Gyu Park, Aiping Yu, Michael Fowler and Zhongwei Chen, “Electrically Rechargeable Zinc–Air Batteries: Progress, Challenges, and Perspective”, Advanced Materials, vol. 29, no. 7, 2017. 6. Renxing Huang, Ying Lei, Dandan Zhang, Huaming Xie, Xingyong Liu, and Honghui Wang, “Facile Fabrication of Nitrogen, Phosphorus and Silicon Co-Doped Porous Carbon as an Efficient Oxygen Reduction Catalyst for Primary Zn-Air Battery”, World Scientific, vol. 14, no. 9, 2019. 7. Md. Arafat Rahman, Xiaojian Wang, and Cuie Wen, “High Energy Density Metal-Air Batteries: A Review”, Journal of The Electrochemical Society, vol. 160, no. 10, 2013, pp. A1759-A1771. 8. Understanding batteries on the micro- and nanometer scale. (https://www.youtube.com/watch?v=H2TSVPyFC8c) 9. Fuel cell. (https://en.wikipedia.org/wiki/Fuel_cell) 10. J.M. Andujar and F.Segura, “Fuel cells: History and updating. A walk along two centuries”, Renewable and Sustainable Energy Reviews, vol. 13, no. 9, 2009, pp. 2309-2322. 11. Leonardo Giorgi and Fabio Leccese, “Fuel Cells: Technologies and Applications”, The Open Fuel Cells Journal, 2013. 12. David Linden and Thomas B. Reddy, Handbook of Batteries, USA: McGraw-Hill, 2002. 13. Omar Z.Sharaf and Mehmet F.Orhan, “An overview of fuel cell technology: Fundamentals and applications”, Renewable and Sustainable Energy Reviews, vol. 32, 2014, pp. 810-853. 14. Prabal Sapkota and Honggon Kim, “Zinc-air fuel cell, a potential candidate for alternative energy”, Journal of Industrial and Engineering Chemistry, vol. 15, no. 4, 2009, pp. 445-450. 15. DURACELL, Technical bulletin. (https://d2ei442zrkqy2u.cloudfront.net/wp-content/uploads/2016/03/Zinc-Air-Tech-Bulletin.pdf) 16. Katrin Harting, Ulrich Kunz and Thomas Turek, “Zinc-Air Batteries: Prospects and Challenges for Future Improvement”, Z. Phys. Chem, vol. 226, no. 2, 2011, pp. 151-166. 17. Pucheng Pei, Keliang Wang and Ze Ma, “Technologies for extending zinc-air battery’s cycle life: A review”, Applied Energy, vol. 128, 2014, pp. 315-324. 18. Peng Gu, Mingbo Zheng, Qunxing Zhao, Xiao Xiao, Huaiguo Xue and Huan Pang, “Rechargeable zinc–air batteries: a promising way to green energy”, Royal Society of Chemistry, Journal of Materials Chemistry A, vol. 5, 2017, pp. 7651-7666. 19. Aroa R. Mainar, Luis C. Colmenares, J. Alberto Blázquez and Idoia Urdampilleta, “A brief overview of secondary zinc anode development: The key of improving zinc‐based energy storage systems”, International Journal of Energy Research, 2017. 20. Steven B. Sherman, Zachary P. Cano, Michael Fowler and Zhongwei Chen, “Range-extending Zinc-air battery for electric vehicle”, AIMS Energy, vol. 6, no.1, 2018, pp. 121-145. 21. Soraya Hosseini, Siow Jing Han, Amornchai Arponwichanop, Tetsu Yonezawa and Soorathep Kheawhom, “Ethanol as an electrolyte additive for alkaline zinc-air flow batteries”, Scientific Report, vol. 8, no. 1, 2018. 22. Vincenzo Caramia and Benedetto Bozzini, “Materials science aspects of zinc–air batteries: a review”, Materials for Renewable and Sustainable Energy, 2014. 23. Yanguang Li and Hongjie Dai, “Recent advances in zinc–air batteries”, Royal Society of Chemistry, Chemical Society Reviews, vol. 43, no. 15, 2014, pp. 5257-5275. 24. Pucheng Pei, Ze Ma, Keliang Wang, Xizhong Wang, Mancun Song and Huachi Xu, “High performance zinc air fuel cell stack”, Journal of Power Sources, 2014. 25. B. Amunátegui, A.lbánez, M.Sierra and M.Perez, “Electrochemical energy storage for renewable energy integration: zinc-air flow batteries”, Journal of Applied Electrochemistry, vol. 48, no. 5, 2017, pp. 627-637. 26. Woranunt Lao-atiman, Kanya Bumroongsil, Amornchai Arpornwichanop, Palang Bumroongsakulsawat, Sorin Olaru and Soorathep Kheawhom, “Model-Based Analysis of an Integrated Zinc-Air Flow Battery/Zinc Electrolyzer System”, Frontiers in Energy Research, 2019. 27. Baejung Kim, Non-Precious Cathode Electrocatalytic Materials for Zinc-Air Battery, Master Thesis, University of Waterloo, Waterloo, Ontario, Canada, 2013. 28. Thangavel Sangeetha, Po-Tuan Chen, Wu-Fu Cheng, Wei-Mon Yan and K.David Huang, “Optimization of the Electrolyte Parameters and Components in Zinc Particle Fuel Cell”, Energies, vol. 12, no. 6, 2019. 29. Keliang Wang, Cheng Liao, Wei Wang, Yu Xiao, Xiaotian Liu and Siyuan Zhao, “Physical shortcut accelerating electron transport of rechargeable zinc-air battery”, Materials Today Energy, vol. 14, 2019. 30. Luis F. Arenas, Adeline Loh, David P. Trudgeon, Xiaohong Li, Carlos Ponce de León and Frank C. Walsh, “The characteristics and performance of hybrid redox flow batteries with zinc negative electrodes for energy storage”, Renewable and Sustainable Energy Reviews, vol. 90, 2018, pp. 992-1016. 31. K. David Huang, Thangavel Sangeetha, Wu-Fu Cheng, Chunyo Lin and Po-Tuan Chen, “Computational Fluid Dynamics Approach for Performance Prediction in a Zinc–Air Fuel Cell”, Energies, vol. 11, no. 9, 2018, pp. 1-13. 32. V P Tyagi, Essential Chemistry, India: Ratna Sagar, 2009. 33. Xinhong Huang and Jin Jiang, “Fuel Cell Technology for Distributed Generation: An Overview”, IEEE International Symposium on Industrial Electronics, Canada, 2006. 34. Piergiorgio Alotto, Massimo Guarnieri and Federico Moro, “Redox flow batteries for the storage of renewable energy: A review”, Renewable and Sustainable Energy Reviews, vol. 29, 2014, pp. 325-335. 35. FuelCell Store (https://www.fuelcellstore.com/blog-section/polarization-curves) 36. Nestor Perez, Electrochemistry and Corrosion Science, USA: Springer, 2016. 37. Zuo Yingjie, Study of High Power Density Zinc-Particle Fuel Cell Stack, Master Thesis, National Taipei University of Technology, Taipei, Taiwan, 2016. 38. Hugh W. Coleman and W. Glenn Steele, Experimentation, Validation and Uncertainty Analysis for Engineers, New York: Wiley, 1995, pp. 40-74. 39. J. Dobryszycki and S. Biallozor, “On some organic inhibitors of zinc corrosion in alkaline media”, Corrosion Science, vol. 43, no. 7, 2001, pp. 1309-1319. 40. John O’M Bockris, Amulya K. N. Reddy and Maria Gamboa-Aldeco, Modern Electrochemistry, USA: Kluwer Academic/Plenum Publishers, 2000. 41. Cynthia G. Zoski, Handbook of Electrochemistry, USA: Elsevier, 2006. 42. Claude Gabrielli, “Once upon a time there was EIS”, Journal Pre-proof, 2019. 43. Basic of Electrochemical Impedance Spectroscopy. (https://www.gamry.com/application-notes/EIS/basics-of-electrochemical-impedance-spectroscopy/) 44. Randles circuit. (https://en.wikipedia.org/wiki/Randles_circuit) 45. Metrohm Autolab, "Electrochemical Impedance Spectroscopy", Netherlands. 46. Adriano Sacco, “Electrochemical impedance spectroscopy: Fundamentals and application in dye-sensitized solar cells”, Renewable and Sustainable Energy Reviews, vol. 79, 2017, pp. 814-829. 47. E. Gongadze, S. Petersen1, U. Beck and U. van Rienen, “Classical Models of the Interface between an Electrode and an Electrolyte”, Excerpt from the Proceedings of the COMSOL Conference, Milan, 2009. 48. Seyed Mohammad Rezaei Niya and Mina Hoorfar, “Study of proton exchange membrane fuel cells using electrochemical impedance spectroscopy technique - A review”, Journal of Power Sources, vol. 240, 2013, pp. 281-293. 49. Chi-yuen Hui, Chi-wai Kan, Chee-leung Mak and Kam-hong Chau, “Flexible Energy Storage System - An Introductory Review of Textile - Based Flexible Supercapacitors”, Processes, MPDI, vol. 7, no. 12, 2019. 50. Zhen He and Florian Mansfeld, “Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies”, Energy & Environmental Science, vol. 2, no. 2, 2009, pp. 141-240. 51. Bode and Nyquist Plot. (https://www.palmsenscorrosion.com/knowledgebase/bode-and-nyquist-plot/) 52. Stanislav Tairov and Luiz Carlos Stevanatto, “Impedance Measurements for Battery State of Health Monitoring”, 2nd International Conference on Control, Instrumentation and Automation (ICCIA), 2011. 53. Po-Tuan Chen, Thangavel Sangeetha, Ting-Wei Hsu, Cheng-Jung Yang, Tung-Yuan Yung, Wei-Mon Yan and K. David Huang, “Improved performance of a Zn-air fuel cell by coupling Zn particle fuel and flowing electrolyte”, Chemical Physics Letters, vol. 728, 2019, pp. 160-166. 54. Thangavel Sangeetha, Cheng-Jung Yang, Po-Tuan Chen, Wei-Mon Yan and K. David Huang, “Discharge performance of Zn-air fuel cells under the influence of Carbopol 940 thickener”, International Journal of Energy Research, 2020. 55. T. Sangeetha and M. Muthukumar, “Influence of Electrode Material and Electrode Distance on Bioelectricity Production from Sago-Processing Wastewater Using Microbial Fuel Cell”, Environmental Progress & Sustainable Energy, American Institute of Chemical Engineers, vol. 32, no. 2, 2012. 56. Sonia M. Tiquia-Arshiro and Deepark Pant, Microbial Electrochemical Technologies, USA: CRC Press, 2020.
|