|
1.Nichols, K.K., et al., The TFOS International Workshop on Contact Lens Discomfort: Report of the Definition and Classification Subcommittee. Investigative Ophthalmology & Visual Science, 2013. 54(11): p. TFOS14-TFOS19. 2.Jones, L., Modern contact lens materials: A clinical performance update. Contact Lens Spectrum, 2002. 17(9): p. 24-35. 3.Allansmith, M.R., et al., Giant Papillary Conjunctivitis in Contact Lens Wearers. American Journal of Ophthalmology, 1977. 83(5): p. 697-708. 4.Jones, L., et al., The TFOS International Workshop on Contact Lens Discomfort: Report of the Contact Lens Materials, Design, and Care Subcommittee. Investigative Ophthalmology & Visual Science, 2013. 54(11): p. TFOS37-TFOS70. 5.Willcox, M.D.P., et al., TFOS DEWS II Tear Film Report. The Ocular Surface, 2017. 15(3): p. 366-403. 6.Bjerrum, K.B., The ratio of albumin to lactoferrin in tear fluid as a diagnostic tool in primary Sjogren's syndrome. Acta Ophthalmologica Scandinavica, 1997. 75(5): p. 507-511. 7.Luensmann, D. and L. Jones, Albumin adsorption to contact lens materials: A review. Contact Lens and Anterior Eye, 2008. 31(4): p. 179-187. 8.Versura, P., et al., Diagnostic performance of a tear protein panel in early dry eye. Molecular vision, 2013. 19: p. 1247-1257. 9.Myopia, J., et al., The impact of myopia and high myopia. Report of the Joint World Health Organization-Brien Holden Vision Institute Global Scientific Meeting on Myopia. 2015. 10.Seki, J.T., et al., Human albumin eye drops as a therapeutic option for the management of keratoconjunctivitis sicca secondary to chronic graft-versus-host disease after stem-cell allografting. Current oncology (Toronto, Ont.), 2015. 22(5): p. e357-63. 11.Higuchi, A., et al., Albumin rescues ocular epithelial cells from cell death in dry eye. Current eye research, 2007. 32(2): p. 83-88. 12.Shimmura, S., et al., Albumin as a tear supplement in the treatment of severe dry eye. British Journal of Ophthalmology, 2003. 87(10): p. 1279. 13.Elzoghby, A.O., W.M. Samy, and N.A. Elgindy, Albumin-based nanoparticles as potential controlled release drug delivery systems. Journal of Controlled Release, 2012. 157(2): p. 168-182. 14.Llabot, J.M., et al., In vitro characterization of new stabilizing albumin nanoparticles as a potential topical drug delivery system in the treatment of corneal neovascularization (CNV). Journal of Drug Delivery Science and Technology, 2019. 52: p. 379-385. 15.Omali, N.B., et al., Surface versus bulk activity of lysozyme deposited on hydrogel contact lens materials in vitro. Contact Lens and Anterior Eye, 2018. 41(4): p. 329-334. 16.Bengani, L.C., J. Leclerc, and A. Chauhan, Lysozyme transport in p-HEMA hydrogel contact lenses. Journal of Colloid and Interface Science, 2012. 386(1): p. 441-450. 17.Subbaraman, L., et al., Lysozyme activity on contact lenses and the impact of denatured lysozyme on human corneal epithelial cells. Contact Lens and Anterior Eye, 2018. 41: p. S20-S21. 18.Su, C.-Y., et al., The characteristics of a preservative-free contact lens care solution on lysozyme adsorption and interfacial friction behavior. Colloids and Surfaces B: Biointerfaces, 2018. 171: p. 538-543. 19.Su, C.-Y., et al., Effects of lysosomal deposition on the friction coefficient of hydrogel contact lenses. Contact Lens and Anterior Eye, 2020. 43(2): p. 144-148. 20.Muntz, A., et al., Tear exchange and contact lenses: A review. Journal of Optometry, 2015. 8(1): p. 2-11. 21.Pult, H., et al., Spontaneous Blinking from a Tribological Viewpoint. The Ocular Surface, 2015. 13(3): p. 236-249. 22.Rosiak, J.M. and F. Yoshii, Hydrogels and their medical applications. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1999. 151(1): p. 56-64. 23.Musgrave, C. and F. Fang, Contact Lens Materials: A Materials Science Perspective. Materials, 2019. 12: p. 261. 24.Lin, C.-C. and K. Anseth, PEG Hydrogels for the Controlled Release of Biomolecules in Regenerative Medicine. Pharmaceutical research, 2009. 26: p. 631-43. 25.Sweeney, D., D. Fonn, and K. Evans, Silicone hydrogels: The evolution of a revolution. Contact Lens Spectrum, 2006. 26.Jones, L. and B. Tighe, Silicone hydrogel contact lens materials update. Silicone Hydrogels Online, 2004. 27.Chou, B., The evolution of silicone hydrogel lenses. Contact Lens Spectrum, 2008. 22(6): p. 37-39. 28.Carter, D.C. and X.-M. He, Structure of human serum albumin. Science, 1990. 249(4966): p. 302-303. 29.Jones, L., et al., Surface treatment, wetting and modulus of silicone hydrogels. Optician, 2006. 232: p. 28-34. 30.Bhamra, T.S. and B.J. Tighe, Mechanical properties of contact lenses: The contribution of measurement techniques and clinical feedback to 50 years of materials development. Cont Lens Anterior Eye, 2017. 40(2): p. 70-81. 31.Wolff, E., The muco-cutaneous junction of the lidmargin and the distribution of the tear fluid. Trans Ophthalmol Soc UK, 1946. 66: p. 291-308. 32.Ng, V., et al., Variability of tear protein levels in normal young adults: between-day variation. Graefe's Archive for Clinical and Experimental Ophthalmology, 2000. 238(11): p. 892-899. 33.Changes in Human Tear Protein Levels With Progressively Increasing Stimulus. Roderick J.Fullard and Denise L.Tucker. 34.INSTITUTE, O.E. UNDERSTANDING THE TEAR FILM. 2020; Available from: https://orlandoeyeinstitute.com/tear-film. 35.Mann, A. and B. Tighe, Contact lens interactions with the tear film. Experimental Eye Research, 2013. 117: p. 88-98. 36.Nichols, J.J. and P.E. King-Smith, Thickness of the pre- and post-contact lens tear film measured in vivo by interferometry. Investigative Ophthalmology and Visual Science, 2003. 44(1): p. 68-77. 37.Shaw, A.J., et al., Eyelid Pressure and Contact with the Ocular Surface. Investigative Ophthalmology & Visual Science, 2010. 51(4): p. 1911-1917. 38.Chapter 9 - Mechanisms of the electrorheological effect, in Studies in Interface Science, T. Hao, Editor. 2005, Elsevier. p. 475-517. 39.Minor, M. and H.P. van Leeuwen, 4 - Dynamics and Kinetics, in Fundamentals of Interface and Colloid Science, J. Lyklema, Editor. 2005, Academic Press. p. 4-1-4-53. 40.Zhang, L., et al., Mapping hydration dynamics around a protein surface. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(47): p. 18461-18466. 41.Burgess, R.R., Chapter 3 Use of Bioinformatics in Planning a Protein Purification, in Methods in Enzymology, R.R. Burgess and M.P. Deutscher, Editors. 2009, Academic Press. p. 21-28. 42.Evans, D.R.H., J.K. Romero, and M. Westoby, Chapter 9 Concentration of Proteins and Removal of Solutes, in Methods in Enzymology, R.R. Burgess and M.P. Deutscher, Editors. 2009, Academic Press. p. 97-120. 43.Novák, P. and V. Havlíček, 4 - Protein Extraction and Precipitation, in Proteomic Profiling and Analytical Chemistry (Second Edition), P. Ciborowski and J. Silberring, Editors. 2016, Elsevier: Boston. p. 51-62. 44.莊榮輝. Enzyme Purification. 2000; Available from: http://juang.bst.ntu.edu.tw/. 45.Satzer, P., et al., Protein adsorption onto nanoparticles induces conformational changes: particle size dependency, kinetics, and mechanisms. Engineering in life sciences, 2016. 16(3): p. 238-246. 46.Rabe, M., D. Verdes, and S. Seeger, Understanding protein adsorption phenomena at solid surfaces. Advances in Colloid and Interface Science, 2011. 162(1): p. 87-106. 47.Chen, H., et al., Biocompatible polymer materials: Role of protein–surface interactions. Progress in Polymer Science, 2008. 33(11): p. 1059-1087. 48.Poncin-Epaillard, F., et al., Surface Treatment of Polymeric Materials Controlling the Adhesion of Biomolecules. Journal of Functional Biomaterials, 2012. 3(3). 49.Mei, S., et al., Influences of tantalum pentoxide and surface coarsening on surface roughness, hydrophilicity, surface energy, protein adsorption and cell responses to PEEK based biocomposite. Colloids and Surfaces B: Biointerfaces, 2019. 174: p. 207-215. 50.Garrett, Q., B. Laycock, and R.W. Garrett, Hydrogel Lens Monomer Constituents Modulate Protein Sorption. Investigative Ophthalmology & Visual Science, 2000. 41(7): p. 1687-1695. 51.Huang, H.-M., et al., Isothermal Titration Microcalorimetric Studies of the Effect of Temperature on Hydrophobic Interaction between Proteins and Hydrophobic Adsorbents. Journal of Colloid and Interface Science, 2000. 229(2): p. 600-606. 52.Giacomelli, C.E. and W. Norde, The Adsorption–Desorption Cycle. Reversibility of the BSA–Silica System. Journal of Colloid and Interface Science, 2001. 233(2): p. 234-240. 53.Temenoff, J.S. and A.G. Mikos, Biomaterials: the intersection of biology and materials science. Vol. 1. 2008: Pearson/Prentice Hall Upper Saddle River, NJ, USA:. 54.Norde, W. and A.C.I. Anusiem, Adsorption, desorption and re-adsorption of proteins on solid surfaces. Colloids and Surfaces, 1992. 66(1): p. 73-80. 55.Dijt, J.C., et al., Kinetics of polymer adsorption in stagnation point flow. Colloids and Surfaces, 1990. 51: p. 141-158. 56.Garrett, Q., et al., Irreversible adsorption of human serum albumin to hydrogel contact lenses: a study using electron spin resonance spectroscopy. Biomaterials, 1999. 20(14): p. 1345-1356. 57.Garrett, Q., R.W. Garrett, and B.K. Milthorpe, Lysozyme sorption in hydrogel contact lenses. Investigative Ophthalmology & Visual Science, 1999. 40(5): p. 897-903. 58.Roach, P., D. Farrar, and C.C. Perry, Interpretation of Protein Adsorption: Surface-Induced Conformational Changes. Journal of the American Chemical Society, 2005. 127(22): p. 8168-8173. 59.Ngai, V., et al., Friction of Contact Lenses: Silicone Hydrogel versus Conventional Hydrogel, in Tribology and Interface Engineering Series, D. Dowson, et al., Editors. 2005, Elsevier. p. 371-379. 60.Høstmark, A.T., S.E. Tomten, and J.E. Berg, Serum albumin and blood pressure: a population-based, cross-sectional study. Journal of hypertension, 2005. 23(4): p. 725-730. 61.Peters Jr, T., All about albumin: biochemistry, genetics, and medical applications. 1995: Academic press. 62.Majorek, K.A., et al., Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Mol Immunol, 2012. 52(3-4): p. 174-82. 63.Michnik, A., et al., Comparative DSC study of human and bovine serum albumin. Journal of thermal analysis and calorimetry, 2006. 84(1): p. 113-117. 64.BANK, P.D. 2012; Available from: http://www.rcsb.org/structure/3V03. 65.Mirejovsky, D., et al., Lipid adsorption onto hydrogel contact lens materials. Advantages of Nile red over oil red O in visualization of lipids. Optometry and vision science : official publication of the American Academy of Optometry, 1991. 68(11): p. 858-864. 66.Castillo, E.J., et al., Characterization of protein adsorption on soft contact lenses: I. Conformational changes of adsorbed human serum albumin. Biomaterials, 1984. 5(6): p. 319-325. 67.Bajpai, A.K. and D.D. Mishra, Adsorption of a blood protein on to hydrophilic sponges based on poly(2-hydroxyethyl methacrylate). Journal of Materials Science: Materials in Medicine, 2004. 15(5): p. 583-592. 68.Bohnert, J., et al., Adsorption of proteins from artificial tear solutions to contact lens materials. Investigative ophthalmology & visual science, 1988. 29(3): p. 362-373. 69.LUENSMANN, D., et al., Confocal Microscopy and Albumin Penetration into Contact Lenses. Optometry and Vision Science, 2007. 84(9): p. 839-847. 70.Ishiguro, R., et al., Modes of conformational changes of proteins adsorbed on a planar hydrophobic polymer surface reflecting their adsorption behaviors. Journal of Colloid and Interface Science, 2005. 290(1): p. 91-101. 71.Boone, A., et al., Ex vivo protein deposition on Bi-weekly silicone hydrogel contact lenses. Optometry and Vision Science, 2009. 86(11): p. 1241-1249. 72.Urgacz, A., E. Mrukwa, and R. Gawlik, Adverse events in allergy sufferers wearing contact lenses. Postepy dermatologii i alergologii, 2015. 32(3): p. 204-209. 73.Runström, G., A. Mann, and B. Tighe, The Fall and Rise of Tear Albumin Levels: A Multifactorial Phenomenon. The Ocular Surface, 2013. 11(3): p. 165-180. 74.Lundh, R.L., S. Liotet, and Y. Pouliquen, Study of the Human Blood-Tear Barrier and the Biochemical Changes in the Tears of 30 Contact Lens Wearers (50 Eyes). Ophthalmologica, 1984. 188(2): p. 100-105. 75.Mann, A. and B. Tighe, The tear envelope: a novel point-of-care diagnostic technique. Cont Lens Anterior Eye, 2009. 32: p. 219. 76.Roba, M., et al., Friction Measurements on Contact Lenses in Their Operating Environment. Tribology Letters, 2011. 44(3): p. 387. 77.Moradi, O., H. Modarress, and M. Noroozi, Experimental study of albumin and lysozyme adsorption onto acrylic acid (AA) and 2-hydroxyethyl methacrylate (HEMA) surfaces. Journal of Colloid and Interface Science, 2004. 271(1): p. 16-19. 78.Torrent-Burgués, J. and F. Sanz, AFM in mode Peak Force applied to the study of un-worn contact lenses. Colloids and Surfaces B: Biointerfaces, 2014. 121: p. 388-394. 79.Venkatakrishnan, A. and V.K. Kuppa, Polymer adsorption on rough surfaces. Current Opinion in Chemical Engineering, 2018. 19: p. 170-177. 80.Fang, H.-W., et al., Conformational and adsorptive characteristics of albumin affect interfacial protein boundary lubrication: From experimental to molecular dynamics simulation approaches. Colloids and Surfaces B: Biointerfaces, 2009. 68(2): p. 171-177. 81.Mishina, H. and M. Kojima, Changes in human serum albumin on arthroplasty frictional surfaces. Wear, 2008. 265(5): p. 655-663. 82.Nečas, D., et al., The Influence of Proteins and Speed on Friction and Adsorption of Metal/UHMWPE Contact Pair. Biotribology, 2017. 11: p. 51-59.
|