(3.235.108.188) 您好!臺灣時間:2021/03/07 20:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:范子威
研究生(外文):FAN, TZU-WEI
論文名稱:探討白蛋白對市售水凝膠與矽水凝膠隱形眼鏡的吸附和摩擦潤滑性質
論文名稱(外文):Investigating the Albumin on the Deposition and Frictional Properties of Commercially Available Hydrogels and Silicone Hydrogel Contact Lenses
指導教授:方旭偉方旭偉引用關係
指導教授(外文):FANG, HSU-WEI
口試委員:方旭偉蘇真瑩林文賓侯鈞賀
口試委員(外文):FANG, HSU-WEISU, CHEN-YINGLIN, WEN PINHOU, CHIUN-HO
口試日期:2020-07-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系生化與生醫工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:67
中文關鍵詞:軟式隱形眼鏡白蛋白摩擦潤滑性質
外文關鍵詞:Soft contact lensesAlbuminTribology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:100
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隱形眼鏡產品已經在我們的生活普及,但配戴過程中還是有許多問題。在配戴隱形眼鏡後會破壞淚液平衡並且與眼部組織接觸,過程中會與眼瞼與眼表產生摩擦運動。當我們戴上隱形眼鏡,淚液蛋白吸附鏡片會破壞淚膜平衡,造成許多不適以及後遺症,並且會提高淚液中水分蒸發而造成乾眼問題,這會導致摩擦刺激結膜而引起過敏反應與不適感,許多研究表明隱形眼鏡的配戴舒適度與鏡片在人眼中的摩擦係數有相關。最近,溶菌酶與隱形眼鏡的相互作用受到大家關注,除了溶菌酶,淚液中還有許多蛋白質。文獻指出白蛋白在眼中濃度變化很大,在乾眼症狀發生初期,白蛋白在淚液中濃度明顯上升,因此白蛋白在淚液中濃度的改變具有臨床意義,目前白蛋白對隱形眼鏡的交互作用和摩擦性質尚不明瞭。為了瞭解白蛋白對不同材質軟式隱形眼鏡的摩擦性質之影響,本研究利用體外測試隱形眼鏡摩擦潤滑性質的方法與蛋白質定量測試方法,探討白蛋白溶液對四種市售軟式隱形眼鏡摩擦情形的影響,量化不同材質隱形眼鏡之摩擦係數與白蛋白的吸附情形,來了解軟式隱形眼鏡對白蛋白的摩擦行為。
Contact lens products have become popular in our lives, and silicone gel lenses are also popular because of the comfort of wearing. After wearing contact lenses, it will destroy the tear balance and contact with eye tissues, and will cause frictional movement with the eyelid and eye surface during blinking. When we put on contact lenses, the tear protein adsorption lens will disrupt the tear film balance, causing many discomforts and sequelae, and will increase the evaporation of water in the tears and cause dry eyes. This will cause friction to stimulate the conjunctiva and cause allergic reactions and discomfort. Many Studies have shown that the wearing comfort of contact lenses is related to the coefficient of friction of lenses in human eyes. Recently, the interaction between lysozyme and contact lenses has attracted attention. In addition to lysozyme, there are many proteins in tears. The literature pointed out that in the early stage of dry eye symptoms, the concentration of albumin in tears increased significantly, so the change in the concentration of albumin in tears has clinical significance. At present, the interaction and friction properties of albumin on contact lenses are not clear. Therefore, in order to understand the friction properties of albumin on soft contact lenses of different materials, this study used in vitro test contact lens friction lubrication platform and protein quantitative test method to explore the effect of albumin solution on the friction effect of various commercially available soft contact lenses, Quantify the friction coefficient of different contact lenses and albumin adsorption to understand the friction behavior of soft contact lenses on albumin.
摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 vii
圖目錄 viii
第 一 章 序論 1
1.1 前言 1
1.2 研究動機 2
第 二 章 文獻回顧 3
2.1 隱形眼鏡 3
2.1.1 水凝膠與矽水凝膠 3
2.1.2 軟式隱形眼鏡材質的演變 5
2.2 淚膜 7
2.3 軟性隱形眼鏡在眼表組織中的運動行為 8
2.4 蛋白質的溶解與沉澱 9
2.4.1雙電層與水化層的形成 9
2.4.2蛋白質的沉澱 9
2.5 蛋白質吸附與軟式隱形眼鏡摩擦係數的影響 10
2.5.1 蛋白質與生醫材料的吸附 10
2.5.2 蛋白質吸附鏡片後的結構變化 11
2.5.3 蛋白質對鏡片摩擦性質的相關研究 12
2.6 白蛋白 13
2.6.1 白蛋白在淚膜中的臨床意義與潛力 14
2.6.2 白蛋白的吸附研究進展 15
第 三 章 關鍵問題與研究方法 16
3.1 關鍵問題 16
3.1.1配戴隱形眼鏡引發之不適感 16
3.1.2白蛋白在淚膜中的特性 16
3.2 研究方法 17
3.2.1 摩擦實驗之隱形眼鏡載具 17
3.2.2 四種不同廠牌之軟式隱形眼鏡 18
3.2.3 實驗架構 18
第 四 章 實驗方法與材料 19
4.1 摩擦實驗 19
4.1.1 目的 19
4.1.2 實驗儀器 19
4.1.3 軟式隱形眼鏡摩擦平台 20
4.1.4 實驗材料及藥品 22
4.1.5 實驗步驟 23
4.2 白蛋白吸附實驗 24
4.2.1 目的 24
4.2.2 分光光度檢測法 24
4.2.3 利用紫外光-可見光光譜儀進行白蛋白定量 25
4.2.4 實驗材料及藥品 25
4.2.5實驗步驟 26
第 五 章 結果與分析 27
5.1 軟式隱形眼鏡材質的表面形貌 27
5.2 四種材質軟性隱形眼鏡之白蛋白吸附實驗結果 29
5.3 四種軟式隱形眼鏡材質與不同潤滑液之摩擦結果 31
5.3.1 摩擦係數量化分析 44
5.4 鏡片先吸附白蛋白後再進行摩擦之實驗結果 50
第 六 章 討論 57
第 七 章 結論 61
參考文獻 62


1.Nichols, K.K., et al., The TFOS International Workshop on Contact Lens Discomfort: Report of the Definition and Classification Subcommittee. Investigative Ophthalmology & Visual Science, 2013. 54(11): p. TFOS14-TFOS19.
2.Jones, L., Modern contact lens materials: A clinical performance update. Contact Lens Spectrum, 2002. 17(9): p. 24-35.
3.Allansmith, M.R., et al., Giant Papillary Conjunctivitis in Contact Lens Wearers. American Journal of Ophthalmology, 1977. 83(5): p. 697-708.
4.Jones, L., et al., The TFOS International Workshop on Contact Lens Discomfort: Report of the Contact Lens Materials, Design, and Care Subcommittee. Investigative Ophthalmology & Visual Science, 2013. 54(11): p. TFOS37-TFOS70.
5.Willcox, M.D.P., et al., TFOS DEWS II Tear Film Report. The Ocular Surface, 2017. 15(3): p. 366-403.
6.Bjerrum, K.B., The ratio of albumin to lactoferrin in tear fluid as a diagnostic tool in primary Sjogren's syndrome. Acta Ophthalmologica Scandinavica, 1997. 75(5): p. 507-511.
7.Luensmann, D. and L. Jones, Albumin adsorption to contact lens materials: A review. Contact Lens and Anterior Eye, 2008. 31(4): p. 179-187.
8.Versura, P., et al., Diagnostic performance of a tear protein panel in early dry eye. Molecular vision, 2013. 19: p. 1247-1257.
9.Myopia, J., et al., The impact of myopia and high myopia. Report of the Joint World Health Organization-Brien Holden Vision Institute Global Scientific Meeting on Myopia. 2015.
10.Seki, J.T., et al., Human albumin eye drops as a therapeutic option for the management of keratoconjunctivitis sicca secondary to chronic graft-versus-host disease after stem-cell allografting. Current oncology (Toronto, Ont.), 2015. 22(5): p. e357-63.
11.Higuchi, A., et al., Albumin rescues ocular epithelial cells from cell death in dry eye. Current eye research, 2007. 32(2): p. 83-88.
12.Shimmura, S., et al., Albumin as a tear supplement in the treatment of severe dry eye. British Journal of Ophthalmology, 2003. 87(10): p. 1279.
13.Elzoghby, A.O., W.M. Samy, and N.A. Elgindy, Albumin-based nanoparticles as potential controlled release drug delivery systems. Journal of Controlled Release, 2012. 157(2): p. 168-182.
14.Llabot, J.M., et al., In vitro characterization of new stabilizing albumin nanoparticles as a potential topical drug delivery system in the treatment of corneal neovascularization (CNV). Journal of Drug Delivery Science and Technology, 2019. 52: p. 379-385.
15.Omali, N.B., et al., Surface versus bulk activity of lysozyme deposited on hydrogel contact lens materials in vitro. Contact Lens and Anterior Eye, 2018. 41(4): p. 329-334.
16.Bengani, L.C., J. Leclerc, and A. Chauhan, Lysozyme transport in p-HEMA hydrogel contact lenses. Journal of Colloid and Interface Science, 2012. 386(1): p. 441-450.
17.Subbaraman, L., et al., Lysozyme activity on contact lenses and the impact of denatured lysozyme on human corneal epithelial cells. Contact Lens and Anterior Eye, 2018. 41: p. S20-S21.
18.Su, C.-Y., et al., The characteristics of a preservative-free contact lens care solution on lysozyme adsorption and interfacial friction behavior. Colloids and Surfaces B: Biointerfaces, 2018. 171: p. 538-543.
19.Su, C.-Y., et al., Effects of lysosomal deposition on the friction coefficient of hydrogel contact lenses. Contact Lens and Anterior Eye, 2020. 43(2): p. 144-148.
20.Muntz, A., et al., Tear exchange and contact lenses: A review. Journal of Optometry, 2015. 8(1): p. 2-11.
21.Pult, H., et al., Spontaneous Blinking from a Tribological Viewpoint. The Ocular Surface, 2015. 13(3): p. 236-249.
22.Rosiak, J.M. and F. Yoshii, Hydrogels and their medical applications. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1999. 151(1): p. 56-64.
23.Musgrave, C. and F. Fang, Contact Lens Materials: A Materials Science Perspective. Materials, 2019. 12: p. 261.
24.Lin, C.-C. and K. Anseth, PEG Hydrogels for the Controlled Release of Biomolecules in Regenerative Medicine. Pharmaceutical research, 2009. 26: p. 631-43.
25.Sweeney, D., D. Fonn, and K. Evans, Silicone hydrogels: The evolution of a revolution. Contact Lens Spectrum, 2006.
26.Jones, L. and B. Tighe, Silicone hydrogel contact lens materials update. Silicone Hydrogels Online, 2004.
27.Chou, B., The evolution of silicone hydrogel lenses. Contact Lens Spectrum, 2008. 22(6): p. 37-39.
28.Carter, D.C. and X.-M. He, Structure of human serum albumin. Science, 1990. 249(4966): p. 302-303.
29.Jones, L., et al., Surface treatment, wetting and modulus of silicone hydrogels. Optician, 2006. 232: p. 28-34.
30.Bhamra, T.S. and B.J. Tighe, Mechanical properties of contact lenses: The contribution of measurement techniques and clinical feedback to 50 years of materials development. Cont Lens Anterior Eye, 2017. 40(2): p. 70-81.
31.Wolff, E., The muco-cutaneous junction of the lidmargin and the distribution of the tear fluid. Trans Ophthalmol Soc UK, 1946. 66: p. 291-308.
32.Ng, V., et al., Variability of tear protein levels in normal young adults: between-day variation. Graefe's Archive for Clinical and Experimental Ophthalmology, 2000. 238(11): p. 892-899.
33.Changes in Human Tear Protein Levels With Progressively Increasing Stimulus. Roderick J.Fullard and Denise L.Tucker.
34.INSTITUTE, O.E. UNDERSTANDING THE TEAR FILM. 2020; Available from: https://orlandoeyeinstitute.com/tear-film.
35.Mann, A. and B. Tighe, Contact lens interactions with the tear film. Experimental Eye Research, 2013. 117: p. 88-98.
36.Nichols, J.J. and P.E. King-Smith, Thickness of the pre- and post-contact lens tear film measured in vivo by interferometry. Investigative Ophthalmology and Visual Science, 2003. 44(1): p. 68-77.
37.Shaw, A.J., et al., Eyelid Pressure and Contact with the Ocular Surface. Investigative Ophthalmology & Visual Science, 2010. 51(4): p. 1911-1917.
38.Chapter 9 - Mechanisms of the electrorheological effect, in Studies in Interface Science, T. Hao, Editor. 2005, Elsevier. p. 475-517.
39.Minor, M. and H.P. van Leeuwen, 4 - Dynamics and Kinetics, in Fundamentals of Interface and Colloid Science, J. Lyklema, Editor. 2005, Academic Press. p. 4-1-4-53.
40.Zhang, L., et al., Mapping hydration dynamics around a protein surface. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(47): p. 18461-18466.
41.Burgess, R.R., Chapter 3 Use of Bioinformatics in Planning a Protein Purification, in Methods in Enzymology, R.R. Burgess and M.P. Deutscher, Editors. 2009, Academic Press. p. 21-28.
42.Evans, D.R.H., J.K. Romero, and M. Westoby, Chapter 9 Concentration of Proteins and Removal of Solutes, in Methods in Enzymology, R.R. Burgess and M.P. Deutscher, Editors. 2009, Academic Press. p. 97-120.
43.Novák, P. and V. Havlíček, 4 - Protein Extraction and Precipitation, in Proteomic Profiling and Analytical Chemistry (Second Edition), P. Ciborowski and J. Silberring, Editors. 2016, Elsevier: Boston. p. 51-62.
44.莊榮輝. Enzyme Purification. 2000; Available from: http://juang.bst.ntu.edu.tw/.
45.Satzer, P., et al., Protein adsorption onto nanoparticles induces conformational changes: particle size dependency, kinetics, and mechanisms. Engineering in life sciences, 2016. 16(3): p. 238-246.
46.Rabe, M., D. Verdes, and S. Seeger, Understanding protein adsorption phenomena at solid surfaces. Advances in Colloid and Interface Science, 2011. 162(1): p. 87-106.
47.Chen, H., et al., Biocompatible polymer materials: Role of protein–surface interactions. Progress in Polymer Science, 2008. 33(11): p. 1059-1087.
48.Poncin-Epaillard, F., et al., Surface Treatment of Polymeric Materials Controlling the Adhesion of Biomolecules. Journal of Functional Biomaterials, 2012. 3(3).
49.Mei, S., et al., Influences of tantalum pentoxide and surface coarsening on surface roughness, hydrophilicity, surface energy, protein adsorption and cell responses to PEEK based biocomposite. Colloids and Surfaces B: Biointerfaces, 2019. 174: p. 207-215.
50.Garrett, Q., B. Laycock, and R.W. Garrett, Hydrogel Lens Monomer Constituents Modulate Protein Sorption. Investigative Ophthalmology & Visual Science, 2000. 41(7): p. 1687-1695.
51.Huang, H.-M., et al., Isothermal Titration Microcalorimetric Studies of the Effect of Temperature on Hydrophobic Interaction between Proteins and Hydrophobic Adsorbents. Journal of Colloid and Interface Science, 2000. 229(2): p. 600-606.
52.Giacomelli, C.E. and W. Norde, The Adsorption–Desorption Cycle. Reversibility of the BSA–Silica System. Journal of Colloid and Interface Science, 2001. 233(2): p. 234-240.
53.Temenoff, J.S. and A.G. Mikos, Biomaterials: the intersection of biology and materials science. Vol. 1. 2008: Pearson/Prentice Hall Upper Saddle River, NJ, USA:.
54.Norde, W. and A.C.I. Anusiem, Adsorption, desorption and re-adsorption of proteins on solid surfaces. Colloids and Surfaces, 1992. 66(1): p. 73-80.
55.Dijt, J.C., et al., Kinetics of polymer adsorption in stagnation point flow. Colloids and Surfaces, 1990. 51: p. 141-158.
56.Garrett, Q., et al., Irreversible adsorption of human serum albumin to hydrogel contact lenses: a study using electron spin resonance spectroscopy. Biomaterials, 1999. 20(14): p. 1345-1356.
57.Garrett, Q., R.W. Garrett, and B.K. Milthorpe, Lysozyme sorption in hydrogel contact lenses. Investigative Ophthalmology & Visual Science, 1999. 40(5): p. 897-903.
58.Roach, P., D. Farrar, and C.C. Perry, Interpretation of Protein Adsorption:  Surface-Induced Conformational Changes. Journal of the American Chemical Society, 2005. 127(22): p. 8168-8173.
59.Ngai, V., et al., Friction of Contact Lenses: Silicone Hydrogel versus Conventional Hydrogel, in Tribology and Interface Engineering Series, D. Dowson, et al., Editors. 2005, Elsevier. p. 371-379.
60.Høstmark, A.T., S.E. Tomten, and J.E. Berg, Serum albumin and blood pressure: a population-based, cross-sectional study. Journal of hypertension, 2005. 23(4): p. 725-730.
61.Peters Jr, T., All about albumin: biochemistry, genetics, and medical applications. 1995: Academic press.
62.Majorek, K.A., et al., Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Mol Immunol, 2012. 52(3-4): p. 174-82.
63.Michnik, A., et al., Comparative DSC study of human and bovine serum albumin. Journal of thermal analysis and calorimetry, 2006. 84(1): p. 113-117.
64.BANK, P.D. 2012; Available from: http://www.rcsb.org/structure/3V03.
65.Mirejovsky, D., et al., Lipid adsorption onto hydrogel contact lens materials. Advantages of Nile red over oil red O in visualization of lipids. Optometry and vision science : official publication of the American Academy of Optometry, 1991. 68(11): p. 858-864.
66.Castillo, E.J., et al., Characterization of protein adsorption on soft contact lenses: I. Conformational changes of adsorbed human serum albumin. Biomaterials, 1984. 5(6): p. 319-325.
67.Bajpai, A.K. and D.D. Mishra, Adsorption of a blood protein on to hydrophilic sponges based on poly(2-hydroxyethyl methacrylate). Journal of Materials Science: Materials in Medicine, 2004. 15(5): p. 583-592.
68.Bohnert, J., et al., Adsorption of proteins from artificial tear solutions to contact lens materials. Investigative ophthalmology & visual science, 1988. 29(3): p. 362-373.
69.LUENSMANN, D., et al., Confocal Microscopy and Albumin Penetration into Contact Lenses. Optometry and Vision Science, 2007. 84(9): p. 839-847.
70.Ishiguro, R., et al., Modes of conformational changes of proteins adsorbed on a planar hydrophobic polymer surface reflecting their adsorption behaviors. Journal of Colloid and Interface Science, 2005. 290(1): p. 91-101.
71.Boone, A., et al., Ex vivo protein deposition on Bi-weekly silicone hydrogel contact lenses. Optometry and Vision Science, 2009. 86(11): p. 1241-1249.
72.Urgacz, A., E. Mrukwa, and R. Gawlik, Adverse events in allergy sufferers wearing contact lenses. Postepy dermatologii i alergologii, 2015. 32(3): p. 204-209.
73.Runström, G., A. Mann, and B. Tighe, The Fall and Rise of Tear Albumin Levels: A Multifactorial Phenomenon. The Ocular Surface, 2013. 11(3): p. 165-180.
74.Lundh, R.L., S. Liotet, and Y. Pouliquen, Study of the Human Blood-Tear Barrier and the Biochemical Changes in the Tears of 30 Contact Lens Wearers (50 Eyes). Ophthalmologica, 1984. 188(2): p. 100-105.
75.Mann, A. and B. Tighe, The tear envelope: a novel point-of-care diagnostic technique. Cont Lens Anterior Eye, 2009. 32: p. 219.
76.Roba, M., et al., Friction Measurements on Contact Lenses in Their Operating Environment. Tribology Letters, 2011. 44(3): p. 387.
77.Moradi, O., H. Modarress, and M. Noroozi, Experimental study of albumin and lysozyme adsorption onto acrylic acid (AA) and 2-hydroxyethyl methacrylate (HEMA) surfaces. Journal of Colloid and Interface Science, 2004. 271(1): p. 16-19.
78.Torrent-Burgués, J. and F. Sanz, AFM in mode Peak Force applied to the study of un-worn contact lenses. Colloids and Surfaces B: Biointerfaces, 2014. 121: p. 388-394.
79.Venkatakrishnan, A. and V.K. Kuppa, Polymer adsorption on rough surfaces. Current Opinion in Chemical Engineering, 2018. 19: p. 170-177.
80.Fang, H.-W., et al., Conformational and adsorptive characteristics of albumin affect interfacial protein boundary lubrication: From experimental to molecular dynamics simulation approaches. Colloids and Surfaces B: Biointerfaces, 2009. 68(2): p. 171-177.
81.Mishina, H. and M. Kojima, Changes in human serum albumin on arthroplasty frictional surfaces. Wear, 2008. 265(5): p. 655-663.
82.Nečas, D., et al., The Influence of Proteins and Speed on Friction and Adsorption of Metal/UHMWPE Contact Pair. Biotribology, 2017. 11: p. 51-59.


電子全文 電子全文(網際網路公開日期:20250817)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔