# 臺灣博碩士論文加值系統

(44.200.171.156) 您好！臺灣時間：2023/03/22 02:46

:::

### 詳目顯示

:

• 被引用:0
• 點閱:61
• 評分:
• 下載:0
• 書目收藏:0
 關於使用基本解法應用在外域聲場問題而引致的虛擬頻率問題，其搭配使用額外源點法可以有效地克服虛擬頻率造成的無解情況，進而求出準確解。從添加額外源點的觀點來看，某些特性與結合Helmholtz內域積分方程公式(combined Helmholtz interior integral equation formulation,CHIEF方法)非常相似，因此可以補近十多年來間接法中沒有CHIEF法的空白。然而此法目前只應用在二維情況下並且存在失效點的風險，因此，本論文有兩個延伸方向，其一是將增加額外源點法推廣至三維外域聲場問題，其二是使用額外雙層勢能與額外混合勢能來取代額外源點的單層勢能。我們將採用退化核函數來推導出虛擬頻率發生的機制，同時也將一併探討其額外源點為單層勢能時可能的失效點位置。為了驗證本想法的有效性，我們考慮了含球體輻射體的外域聲場問題。在球體輻射體的問題下我們考慮四個不同的案例，分別是單根與三重根的情況，並在各自分為無解與無限多解的情況，此外對於額外單層勢能的徑向失效點位，改換使用額外雙層勢能，可有效地解決。最後則再考慮扁長橢球體的情況，來驗證本法的正確性。
 Regarding the problem of the fictitious frequency caused by the exterior acoustic problems by using the method of fundamental solutions (MFS), using the extra source points approach can effectively overcome the problem of non-unique solution caused by the fictitious frequency. In this way, the accurate solution can be determined. From the viewpoint of adding extra source points, some properties are very similar to the combined Helmholtz interior integral equation formulation (CHIEF method). Therefore it can fill in the blank area that there is no CHIEF method in the indirect method on the recent decade. However, this method is only used to solve two-dimensional problems and there is a risk of failure points in the current state. Therefore, there are two extensions in this thesis. One is to extend the method of adding extra source points to the three-dimensional exterior acoustic problems. The second is using the extra double-layer potential and the mixed potential to replace the single-layer potential of the extra source. We use the degenerate kernel to derive the occurring mechanism of fictitious frequency. We also derive the locations of possible failure source points when the extra single-layer potential is used to demonstrate the validity of the present way. We consider an exterior acoustic problem with a spherical radiator. In the problem of spherical radiator, we consider four different cases which are the cases of single root and triple root with the cases of no solution and infinite solutions. In addition, for the failure point on the radial nodal line of the extra single-layer potential, using the extra double-layer potential can be effectively solved. Finally, we also consider the case of prolate spheroid radiator to verify the correctness of present method.
 目錄目錄 IV表目錄 VI圖目錄 VII第一章 介紹 11-1研究背景與動機 11-2論文架構 4第二章 問題與方法 72-1問題描述 72-2間接邊界元法 82-3基本解法 92-4額外源點法 102-4-1間接邊界元法 102-4-2基本解法 102-5虛擬頻率發生的機制 132-5-1球型案例 132-5-2扁長型橢球案例 162-6利用退化核來解析推導可能的失效點位置 18第三章 數值例題 253-1說明例題 253-1-1球型案例 253-1-2扁長型橢球案例 27第四章 結論與未來展望 564-1結論 564-2未來展望 56參考文獻 58表目錄表1-1 比較解決虛擬頻率問題的方法[30] 5表3-1 球型案例的四種情況 29表3-2 扁長型橢球案例的四種情況 30表3-3在0＜k＜10的範圍內，可能的虛擬頻率(球型) 31表3-4 使用基本解法得到的Fredholm二擇一定理結果 31表3-5 j1(ka)的前兩個零根 31表3-6 球型諧合函數在特定平面的投影等高線圖 32表3-7 在0＜k＜10的範圍內，可能的虛擬頻率(扁長型橢球) 33圖目錄圖1-1 論文架構 6圖2-1 球型與扁長型橢球外域聲場問題 23圖2-2閉合型基本解與退化核的絕對值等高線圖比較(XY平面)24圖3-1 源點與邊界點的分布(球型,72個點) 34圖3-2 球型案例的最小奇異值對k作圖 34圖3-3 球型案例一的等高線圖(額外源點法) 35圖3-4 球型案例二的等高線圖(額外源點法) 36圖3-5 球型案例三的等高線圖(額外源點法) 37圖3-6 球型案例四的等高線圖(額外源點法) 38圖3-7 式2-58的最小奇異值分析 39圖3-8 額外源點的失效點分析(球型案例四) 40圖3-9 徑向失效點分析(球型案例四) 41圖3-10 球型案例一的等高線圖(雙層與混合) 42圖3-11 球型案例二的等高線圖(雙層與混合) 43圖3-12 球型案例三的等高線圖(雙層與混合) 44圖3-13 球型案例四的等高線圖(雙層與混合) 45圖3-14 球型案例四混合勢能實數與虛數 46圖3-15 源點與邊界點的分布(扁長型橢球,72個點) 47圖3-16 扁長型橢球案例的最小奇異值對k作圖 47圖3-17 扁長型橢球案例一的等高線圖(額外源點法) 48圖3-18 扁長型橢球案例二的等高線圖(額外源點法) 49圖3-19 扁長型橢球案例三的等高線圖(額外源點法) 50圖3-20 扁長型橢球案例四的等高線圖(額外源點法) 51圖3-21 扁長型橢球案例一的等高線圖(雙層與混合) 52圖3-22 扁長型橢球案例二的等高線圖(雙層與混合) 53圖3-23 扁長型橢球案例三的等高線圖(雙層與混合) 54圖3-24 扁長型橢球案例四的等高線圖(雙層與混合) 55
 參考文獻[1]A. J. Burton, and G. F. Miller, “The application of integral equation methods to numerical solutions of some exterior boundary value problem, ” Proc. R. Soc. A-Math. Phys. Eng. Sci. 323, 201-210 (1971).[2]H. A. Schenck, “Improved integral formulation for acoustic radiation problems,” J. Acoust. Soc. Am. 44, 41-58 (1968).[3]J. T. Chen, L. W. Liu, and H.-K. Hong, “Spurious and true eigensolutions of Helmholtz BIEs and BEMs for a multiply-connected problem,” Proc. R. Soc. A-Math. Phys. Eng. Sci. 459, 1891-1924 (2003).[4]I. L. Chen, “Using the method of fundamental solutions in conjunction with the degenerate kernel in cylindrical acoustic problems,” J. Chin. Inst. Eng. 29, 445-457 (2011).[5]S. Kirkup,“The Boundary Element Method in Acoustics, ”Integrated Sound Software(1998).[6]H. A. Schenck, “Helmholtz integral formulation of the sonar equations,” The J. Acoust. Soc. Am. 79, 1423-1433 (1986). [7]W. Benthien, and A. Schenck, “Nonexistence and non-uniqueness problems associated with integral equation method in acoustics,” Comput. Struct. 65, 295-305 (1997).[8]S. Marburg, and B. Nolte, Computational Acoustics of Noise Propagation in Fluids-Finite and Boundary Element Methods(Berlin, Germany, 2008).[9]S. Marburg, and B. Amini,“Cat’s eye radiation with boundary elements: Comparative study on treatment of irregular frequencies,” J. Comput. Acoust. 13, 21-45 (2005).[10]J. D. Achenbach,G. E. Kechter and Y. -L. Xu,“Off-boundary approach to the boundary element method,” Comput. Meth. Appl. Mech. Eng. 70,191-201(1988).[11]P. Juhl, “A numerical study of the coefficient matrix of the boundary element method near characteristic frequencies,” J. Sound Vibr. 175, 39-50 (1994).[12]W. Schroeder, and I. Wolff, “The origin of spurious modes in numerical solutions of electromagnetic field eigenvalue problems,” IEEE Trans. Microw. Theory Tech. 42, 644-653 (1994).[13]A. F. Seybert, and T. K. Rengarajan, “The use of CHIEF to obtain unique solutions for acoustic radiation using boundary integral equations,” J. Acoust. Soc. Am. 81, 1299-1306 (1987). [14]T. W. Wu, and A. F. Seybert, “A weighted residual formulation for the CHIEF method in acoustics,” J. Acoust. Soc. Am. 90, 1608-1614 (1991).[15]S. Ohmastsu, “A new simple method to eliminate the irregular frequencies in the theory of water wave radiation problems,” Papers of Ship Research Institute (1983).[16]L. Lee, and T. W. Wu, “An enhanced CHIEF method for steady-state elastodynamics,” Eng. Anal. Boundary Elem. 12, 75-83 (1993).[17]E. Dokumaci, “A study of the failure of numerical solutions in boundary element analysis of acoustic radiation problems,” J. Sound Vib. 139, 83-97 (1990).[18]I. L. Chen, J. T. Chen, and M. T. Liang, “Analytical study and numerical experiments for radiation and scattering problems using the CHIEF method,” J. Sound Vib. 248, 809-828 (2001).[19]I. L. Chen, J. T. Chen, S. R. Kuo, and M. T. Liang, “A new method for true and spurious eigensolutions of arbitrary cavities using the CHEEF method,” J. Acoust. Soc. Am. 109, 982-999 (2001).[20]J. T. Chen and J. W. Lee, “Water wave problems using null-ﬁeld boundary integral equations: Ill-posedness and remedies,” Appl. Anal. 91, 675-702 (2012). [21]H. Brakhage and P. Werner, “Uber das Dirichletsche aussenraumproblem fur die Helmholtzsche schwingungsgleichung” (“About the Dirichlet outer space problem for the Helmholtz equation of oscillation”), Arch. Math. 16, 325-329 (1965).[22]O. I. Panich, “On the question of the solvability of the exterior boundary problem for the wave equation and Maxwell’s equation,” Uspeki. Mat. Nauk 20, 221-226 (1965).[23]J. Y. Hwang and S. C. Chang, “A retracted boundary integral equation for exterior acoustic problem with unique solution for all wave numbers,” J. Acoust. Soc. Am. 90, 1167-1180 (1991).[24]J. T. Chen,H. Han, S. R. Kuo and S. K. Kao, “Regularization method for ill-conditioned system of the integral equation of the first kind with the logarithmic kernel,” Inverse Probl. Sci. Eng. 22, 1176-1195.[25]J. T. Chen, W. S. Huang, J. W. Lee, and Y. C. Tu, “A self-regularized approach for deriving the free–free ﬂexibility and stiffness matrices,” Comput. Struct. 145, 12-22 (2014).[26]F. X. Canning, “Singular value decomposition of integral equation of EM and applications to the cavity resonance problem,” IEEE Trans. Antennas Propag. 37, 1156-1163 (1989). [27]S. Poulin, “A boundary element model for diffraction of water waves on varying water depth,” Ph.D. Dissertation, Institute of Department of Hydrodynamics and Water Resources, Technical University of Denmark, Lyngby (1997).[28]J. L. Yang, “Rank-deﬁciency for problem of degenerate scale and ﬁctitious frequencies,” Master’s thesis, supervised by Prof. Jeng-Tzong Chen, National Taiwan Ocean University, Keelung, Taiwan (2017).[29]J. W. Lee, C. F. Nien, and J. T. Chen, “Combination of the CHIEF and the self-regularization technique for solving 2D exterior Helmholtz equations with ﬁctitious frequencies in the indirect BEM and MFS,” in Symposium of the International Association for Boundary Element Methods (IABEM 2018), Paris, France (2018).[30]J. W. Lee, J. T. Chen, and C. F. Nien, “Indirect boundary element method combining extra fundamental solutions for solving exterior acoustic problems with fictitious frequencies,” J. Acoust. Soc. Am. 145(5), 3116-3132 (2019).[31]E. Klaseboer, F. D. E. Charlet, B-C. Khoo, Q. Sun, D. Y. C. Chan, “ Eliminating the ﬁctitious frequency problem in BEM solutions of the external Helmholtz equation,” Eng. Anal. Bound. Elem. 109, 106-116 (2019).[32]J. W. Lee, J. T. Chen, S. Y. Leu and S. K. Kao, “Null-ﬁeld BIEM for solving a scattering problem from a point source to a two-layer prolate spheroid,” Acta Mech. 225(3), 873-891 (2014). [33]J. T. Chen, J. W. Lee, Y. C. Kao and S. Y. Leu, “Eigenanalysis for a confocal prolate spheroidal resonator using the null-ﬁeld BIEM in conjunction with degenerate kernels,” Acta Mech. 226:475-490 (2015).
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 間接邊界元素法與基本解法在二維外域聲場虛擬頻率問題改進之研究 2 零場邊界積分方程法求解含球形和扁長橢球形邊界拉普拉斯方程之格林函數問題 3 零場邊界積分方程法求解含圓與橢圓邊界之自由振動與水波Helmholtz問題 4 加法定理於工程問題之應用

 無相關期刊

 1 零場邊界積分方程法求解含圓形孔洞功能梯度介質的反平面問題 2 零場邊界積分方程法求解含圓形孔洞之功能梯度材料與雙材料的SH波散射問題 3 沖床不同剛性下之結構最佳化 4 人壽保險公司資產管理三議題：信用交換交易、CEO向日葵行為與CEO過度自信行為 5 利用二維姿態判斷人類的行為意向 6 圓極化可切換微帶天線陣列 7 基於SDN與vCDN整合之多媒體串流最佳化研究 8 基於資料驅動學習之高中生的人工智慧機器人課程 9 基於人臉生物識別技術的駕駛員疲勞檢測研究 10 設計與實作基於深度學習技術之QA機器人 11 循環經濟和環境認證對企業碳行為之影響 12 企業提升碳聲譽的因素與企業價值之關聯性 13 邊緣型糖尿病對中老年人勞動市場成效的影響—美國2017年國民健康訪問調查之分析 14 飛鼠的回鄉之路：一個多元文化觀點的自我敘說 15 伊斯蘭國發展之研究(2016-2019)

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室