|
參考文獻 [1]A. J. Burton, and G. F. Miller, “The application of integral equation methods to numerical solutions of some exterior boundary value problem, ” Proc. R. Soc. A-Math. Phys. Eng. Sci. 323, 201-210 (1971).
[2]H. A. Schenck, “Improved integral formulation for acoustic radiation problems,” J. Acoust. Soc. Am. 44, 41-58 (1968).
[3]J. T. Chen, L. W. Liu, and H.-K. Hong, “Spurious and true eigensolutions of Helmholtz BIEs and BEMs for a multiply-connected problem,” Proc. R. Soc. A-Math. Phys. Eng. Sci. 459, 1891-1924 (2003).
[4]I. L. Chen, “Using the method of fundamental solutions in conjunction with the degenerate kernel in cylindrical acoustic problems,” J. Chin. Inst. Eng. 29, 445-457 (2011).
[5]S. Kirkup,“The Boundary Element Method in Acoustics, ”Integrated Sound Software(1998).
[6]H. A. Schenck, “Helmholtz integral formulation of the sonar equations,” The J. Acoust. Soc. Am. 79, 1423-1433 (1986).
[7]W. Benthien, and A. Schenck, “Nonexistence and non-uniqueness problems associated with integral equation method in acoustics,” Comput. Struct. 65, 295-305 (1997).
[8]S. Marburg, and B. Nolte, Computational Acoustics of Noise Propagation in Fluids-Finite and Boundary Element Methods(Berlin, Germany, 2008).
[9]S. Marburg, and B. Amini,“Cat’s eye radiation with boundary elements: Comparative study on treatment of irregular frequencies,” J. Comput. Acoust. 13, 21-45 (2005).
[10]J. D. Achenbach,G. E. Kechter and Y. -L. Xu,“Off-boundary approach to the boundary element method,” Comput. Meth. Appl. Mech. Eng. 70,191-201(1988).
[11]P. Juhl, “A numerical study of the coefficient matrix of the boundary element method near characteristic frequencies,” J. Sound Vibr. 175, 39-50 (1994).
[12]W. Schroeder, and I. Wolff, “The origin of spurious modes in numerical solutions of electromagnetic field eigenvalue problems,” IEEE Trans. Microw. Theory Tech. 42, 644-653 (1994).
[13]A. F. Seybert, and T. K. Rengarajan, “The use of CHIEF to obtain unique solutions for acoustic radiation using boundary integral equations,” J. Acoust. Soc. Am. 81, 1299-1306 (1987).
[14]T. W. Wu, and A. F. Seybert, “A weighted residual formulation for the CHIEF method in acoustics,” J. Acoust. Soc. Am. 90, 1608-1614 (1991).
[15]S. Ohmastsu, “A new simple method to eliminate the irregular frequencies in the theory of water wave radiation problems,” Papers of Ship Research Institute (1983).
[16]L. Lee, and T. W. Wu, “An enhanced CHIEF method for steady-state elastodynamics,” Eng. Anal. Boundary Elem. 12, 75-83 (1993).
[17]E. Dokumaci, “A study of the failure of numerical solutions in boundary element analysis of acoustic radiation problems,” J. Sound Vib. 139, 83-97 (1990).
[18]I. L. Chen, J. T. Chen, and M. T. Liang, “Analytical study and numerical experiments for radiation and scattering problems using the CHIEF method,” J. Sound Vib. 248, 809-828 (2001).
[19]I. L. Chen, J. T. Chen, S. R. Kuo, and M. T. Liang, “A new method for true and spurious eigensolutions of arbitrary cavities using the CHEEF method,” J. Acoust. Soc. Am. 109, 982-999 (2001).
[20]J. T. Chen and J. W. Lee, “Water wave problems using null-field boundary integral equations: Ill-posedness and remedies,” Appl. Anal. 91, 675-702 (2012).
[21]H. Brakhage and P. Werner, “Uber das Dirichletsche aussenraumproblem fur die Helmholtzsche schwingungsgleichung” (“About the Dirichlet outer space problem for the Helmholtz equation of oscillation”), Arch. Math. 16, 325-329 (1965).
[22]O. I. Panich, “On the question of the solvability of the exterior boundary problem for the wave equation and Maxwell’s equation,” Uspeki. Mat. Nauk 20, 221-226 (1965).
[23]J. Y. Hwang and S. C. Chang, “A retracted boundary integral equation for exterior acoustic problem with unique solution for all wave numbers,” J. Acoust. Soc. Am. 90, 1167-1180 (1991).
[24]J. T. Chen,H. Han, S. R. Kuo and S. K. Kao, “Regularization method for ill-conditioned system of the integral equation of the first kind with the logarithmic kernel,” Inverse Probl. Sci. Eng. 22, 1176-1195.
[25]J. T. Chen, W. S. Huang, J. W. Lee, and Y. C. Tu, “A self-regularized approach for deriving the free–free flexibility and stiffness matrices,” Comput. Struct. 145, 12-22 (2014).
[26]F. X. Canning, “Singular value decomposition of integral equation of EM and applications to the cavity resonance problem,” IEEE Trans. Antennas Propag. 37, 1156-1163 (1989).
[27]S. Poulin, “A boundary element model for diffraction of water waves on varying water depth,” Ph.D. Dissertation, Institute of Department of Hydrodynamics and Water Resources, Technical University of Denmark, Lyngby (1997).
[28]J. L. Yang, “Rank-deficiency for problem of degenerate scale and fictitious frequencies,” Master’s thesis, supervised by Prof. Jeng-Tzong Chen, National Taiwan Ocean University, Keelung, Taiwan (2017).
[29]J. W. Lee, C. F. Nien, and J. T. Chen, “Combination of the CHIEF and the self-regularization technique for solving 2D exterior Helmholtz equations with fictitious frequencies in the indirect BEM and MFS,” in Symposium of the International Association for Boundary Element Methods (IABEM 2018), Paris, France (2018).
[30]J. W. Lee, J. T. Chen, and C. F. Nien, “Indirect boundary element method combining extra fundamental solutions for solving exterior acoustic problems with fictitious frequencies,” J. Acoust. Soc. Am. 145(5), 3116-3132 (2019).
[31]E. Klaseboer, F. D. E. Charlet, B-C. Khoo, Q. Sun, D. Y. C. Chan, “ Eliminating the fictitious frequency problem in BEM solutions of the external Helmholtz equation,” Eng. Anal. Bound. Elem. 109, 106-116 (2019).
[32]J. W. Lee, J. T. Chen, S. Y. Leu and S. K. Kao, “Null-field BIEM for solving a scattering problem from a point source to a two-layer prolate spheroid,” Acta Mech. 225(3), 873-891 (2014). [33]J. T. Chen, J. W. Lee, Y. C. Kao and S. Y. Leu, “Eigenanalysis for a confocal prolate spheroidal resonator using the null-field BIEM in conjunction with degenerate kernels,” Acta Mech. 226:475-490 (2015).
|