跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/07 20:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳畯豐
研究生(外文):Chun-Fong Wu
論文名稱:應用飛機設計方法進行無人飛行載具概念設計參數分析與研究-以長滯空無人飛行載具為例
論文名稱(外文):Application of Airplane Sizing Methodology to the Study on Conceptual Design of UAVs Parameters: A Long-Endurance UAV as an Example
指導教授:洪健君
指導教授(外文):Chien-Chun Hung
口試委員:羅明忠蕭富元
口試日期:2020-05-22
學位類別:碩士
校院名稱:淡江大學
系所名稱:航空太空工程學系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:83
中文關鍵詞:偵蒐無人飛行載具概念設計長滯空任務需求
外文關鍵詞:reconnaissanceUAVconceptual designlong-endurance requirements
相關次數:
  • 被引用被引用:0
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
自20世紀發展至今,無人飛行載具已成為航太產業不可或缺的一環,但無人飛行載具在設計沒有一套固定的方法,所以本研究以長滯空無人飛行載具為例,並應用載人飛機概念設計方法找出其相關的概念設計參數;除了能清楚了解這類型無人飛行載具的主要設計參數、性能數據與初步構型特性,還能作為後續構型改良的依據,未來也能透過飛行模擬軟體驗證這些概念設計參數的可行性。最後本研究希望透過這套研究方法與結果,提升國內無人飛行載具設計能量。
本研究首先蒐集長滯空無人飛行載具相關的設計參數與任務規格,例如掠奪者RQ-1與其它同等級的偵蒐型無人飛行載具,再運用載人飛機概念設計方法,從有限的設計數據找出更多的概念設計參數。本研究過程主要分成三階段,首先訂出長滯空無人飛行載具的規格、任務需求、酬載等目標,然後對起飛重量、空重、燃油重量進行初步估算;在第一階段會探討長滯空無人飛行載具的起飛總重靈敏性、第二階段探討性能需求,最後第三階段進行初步構型設計。
The development of UAVs become more and more important since the 20 century. However, there is not a fixed design methodology for UAVs. Therefore, this research takes a long-endurance UAV as an example and adopts airplane conceptual design methodology to search its conceptual design parameters. Moreover, these parameters can be adopted to the further configuration improvement and be verified by flight simulators in future. As a result, this research is able to provide some conceptual design parameters of the similar long-endurance UAV, RQ-1 Predator for the further configuration improvement and determine the feasibility. In other words, this research hopes to enhance Taiwanese design capability of UAV in the near future.
This research will refer to some basic and restricted design data and mission specifications of long-endurance UAVs such as RQ-1 Predator and others with similar mission specifications. Thus, this research can find out more relevant design data and acquire some knowledge about the preliminary design of the long-endurance UAV by using airplane design methodologies. The long-endurance UAVs include High-Altitude Long-Endurance (HALE) and Medium-Altitude Long-Endurance (MALE) UAVs. This research would focus on the conceptual design with long-endurance requirements and go through three parts. Deciding the specification, mission profile and payload weight is the first priority. Then, this research would estimate the gross take-off weight, empty weight and mission fuel weight. The first phase is to discuss the gross take-off weigh sensitivity. The second phase is to discuss the performance requirements. Finally, the third phase is to implement the preliminary configuration design.
Contents
List of Tables.........................................xii
List of Figures.......................................xiii
Nomenclature...........................................xiv
Acronym................................................xix
1. Introduction.....................................1
1.1 Motivation and Objective...........................3
1.2 Literature Review..................................4
1.3 Outline............................................4
2. Weight Estimation................................6
2.1 General Outline of the Weight Estimation...........7
2.2 Determination of Mission Fuel Weight...............8
2.3 Sizing Long-Endurance UAV..........................9
2.4 Summary.............................................13
3. Analysis of Gross Take-off Weight Sensitivity...14
3.1 Sensitivity of Gross Take-off Weight to Payload Weight
.............16
3.2 Sensitivity of Gross Take-off Weight to Empty Weight .............16
3.3 Sensitivity of Gross Take-off Weight to Other Basic Parameters...16
3.4 Summary...........................................20
4. Specific Performance Requirements Estimation....21
4.1 Sizing to Stall Speed Requirements................22
4.2 Sizing to Take-off Distance Requirements..........23
4.3 Sizing to Landing Distance Requirements...........27
4.4 Sizing to Climb Requirements......................30
4.4.1 Estimating Drag Polars at Low Speed...........30
4.4.2 Sizing to FAR 23 Rate-of-Climb Requirements...33
4.4.3 Sizing to FAR 23 Climb Gradient Requirements..36
4.4.4 Synopsis of FAR 23 Climb Requirements.........37
4.4.5 FAR 23.65 (AEO)...............................39
4.4.6 FAR 23.77 (AEO)...............................40
4.4.7 Sizing to Time-to-Climb Requirements..........42
4.5 Matching of All Performance Requirements..........45
4.6 Conclusions.......................................47
5. Preliminary Configuration Design................48
5.1 Class Ⅰ Methods...................................48
5.2 Overall Configuration.............................49
5.3 Fuselage Layout...................................51
5.4 Propulsion System.................................52
5.5 Wing Planform and Lateral Control Surfaces........54
5.6 Weight and Balance................................60
5.7 V-tail and Stability..............................65
5.8 Conclusions.......................................68
6. Summary and Conclusions.........................69
References..............................................72

List of Tables
Table 2.1 Mission Specification for This Research.......10
Table 2.2 Weight Comparison.............................13
Table 3.1 Sensitivity Parameters........................15
Table 3.2 Breguet Partials for Propeller Driven.........18
Table 3.3 Cruise and Loiter Phases Data.................19
Table 3.4 Growth Factors of Cruise and Loiter Phases....19
Table 4.1 Stall Requirements............................22
Table 4.2 Take-off Requirements: (W/P)_TO psf...........26
Table 4.3 Landing Requirements..........................29
Table 4.4 Results of Equivalent-Flat-Plate Drag Method..31
Table 4.5 First Estimates for and with Flaps and Gear Down...........32
Table 4.6 Primary Drag Polars for Specific Configurations ...............32
Table 4.7 FAR 23.65 RC Requirements.....................39
Table 4.8 FAR 23.65 CGR Requirements....................40
Table 4.9 FAR 23.77 CGR Requirements....................41
Table 4.10 Time-to-Climb Requirements...................44
Table 4.11 Characteristic Design Parameters.............46
Table 5.1 Fuselage Parameters...........................52
Table 5.2 Engine Parameters.............................53
Table 5.3 Wing Design Input Data........................55
Table 5.4 Wing Design Parameters........................58
Table 5.5 Aileron Design Parameters.....................60
Table 5.6 Weight Fraction Results.......................61
Table 5.7 Component Weight and Coordinate Data..........63
Table 5.8 Loading Scenarios.............................64

List of Figures
Figure 2.1 Weight Estimate Flow Chart....................7
Figure 2.2 Mission Profile..............................10
Figure 4.1 Take-off Process.............................23
Figure 4.2 Effect of TOP23 on Take-off Distance.........25
Figure 4.3 Effect of Wing Loading on Power Loading for Take-off Phase...............................................25
Figure 4.4 Landing Process..............................27
Figure 4.5 Forces in an Accelerated Climb...............33
Figure 4.6 Climb Requirements...........................42
Figure 4.7 Linear Relationship between RC and Altitude..43
Figure 4.8 Matching Plot................................45
Figure 5.1 RQ-1 Threeviews..............................50
Figure 5.2 Preliminary Flight Envelop...................53
Figure 5.3 Wing Planform................................56
Figure 5.4 Aileron Planform.............................59
Figure 5.5 Three Coordinates Sketch.....................62
Figure 5.6 CG Excursion Diagram.........................64
[1]Aldridge, Jr., E. C. and Stenbit, J. P., Unmanned Aerial Vehicles Roadmap, Department of Defense, USA, pp. 1-195, 2002.
[2]Bone, E. and Bolkcom, C., Unmanned Aerial Vehicles: Background and Issus for Congress, Department of Defense, USA, pp. 1-48, 2002.
[3]https://www.cradleofaviation.org/history/exhibits/exhibit-galleries/world_war_i/curtiss_sperry_aerial_torpedo.html, Curtiss-Sperry Aerial Torpedo, Cradle of Aviation Museum website. Accessed on: 22/05/2020.
[4]http://www.spacewar.com/news/uav-05zzzm.html, Firebee Aerial Target, Space War website. Accessed on: 22/05/2020.
[5]Goetzendorf-Grabowski, T., Frydrychewicz, A., Goraj, Z., and Suchodolski, S., “MALE UAV Design of an Increased Reliability Level,” Aircraft Engineering and Aerospace Technology, vol. 78, no. 3, pp. 226-235, 2006.
[6]Goraj, Z., “Design Challenges Associated with Development of a New Generation UAV,” Aircraft Engineering and Aerospace Technology, vol. 77, no. 5, pp. 361-368, 2005.
[7]Gadomski, J., Hernik, B., and Goraj, Z., “Analysis and Optimisation of a MALE UAV Loaded Structure,” Aircraft Engineering and Aerospace Technology, vol. 78, no. 2, pp. 120-131, 2006.
[8]Harmon, F. G., Frank, A. A., and Chattot, J. J., “Conceptual Design and Simulation of a Small Hybrid-electric Unmanned Aerial Vehicle,” Journal of Aircraft, vol. 43, no. 5, pp. 1490-1498, 2006.
[9]Galinski, C. and Goraj, Z. “Experimental and Numerical Results Obtained for a Scaled RPV and a Full Size Aircraft,” Aircraft Engineering and Aerospace Technology, vol. 76, no. 3, pp. 305-313, 2004.
[10]Cook, K. L. B., “The Silent Force Multiplier: The History and Role of UAVs in Warfare,” IEEE Aerospace Conference, pp. 1-7, Mar. 2007.
[11]Sobester A. and Keaney, A. J., “Multidisciplinary Design Optimization of UAV Airframes,” the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper 2006-1612, Rhode Island, USA, May 2006.
[12]Broughton, B. A., Heise, R., and Blaauw, D., “Project Sekwa: A Variable Stability, Blended-Wing-Body, Research UAV,” Royal Aeronautical Society Annual Applied Aerodynamics Research Conference, London, UK, Oct. 2008.
[13]Astuti, G., Longo, D., Melita, C. D., Muscato, G., and Orlando, A., “HIL Tuning of UAV for Exploration of Risky Environments,” International Journal of Advanced Robotic Systems, vol. 5, no. 4, pp. 419-424, Dec. 2008.
[14]Jin, W. and Lee, Y.-G., “Computational Analysis of the Aerodynamic Performance of a Long-Endurance UAV,” International Journal of Aeronautical and Space Science, vol. 15, no. 4, pp. 374-382, 2014.
[15]Panagiotou, P., Giannakis, E., Savaidis, G., and Yakinthos, K., “Aerodynamic and Structural Design for the Development of a MALE UAV,” Aircraft Engineering and Aerospace Technology, vol. 90, no. 7, pp. 1077-1087, 2018.
[16]Kressel, I., Balter, J., Mashiach, N., Sovran, I., Shapira, O., Shemesh, N. Y., Glamm, B., Dvorjetski, A., Yehoshua, T., and Thu, M., “High speed, In-Flight Structural Health Monitoring System for Medium Altitude Long Endurance Unmanned Air Vehicle,” the 7th European Workshop on Structural Health Monitoring, Nantes, France, pp. 274-280, Jul. 8-11, 2014.
[17]Marta, A. C. and Gamboa, P. V., “Long Endurance Electric UAV for Civilian Surveillance Missions,” the 29th Congress of the International Council of the Aeronautical Sciences, St. Petersburg, Russian, Set. 7-12, 2014.
[18]https://fas.org/irp/program/collect/predator.htm, RQ-1 Predator MALE UAV, Intelligence Resource Program website. Accessed on: 22/05/2020.
[19]https://www.airspacemag.com/flight-today/send-in-the-global-hawk-8601982/, Send in the Global Hawk, Air & Space Magazine website. Accessed on: 22/05/2020.
[20]Weibel, R. E. and Hansman, R. J. Jr., “Safety Considerations for Operation of Different Classes of UAVs in the NAS,” AIAA the 3rd “Unmanned Unlimited” Technical Conference, Workshop and Exhibit, Chicago, Illinois, USA, Sept. 20-22, 2004.
[21]Hung, C.-C., Lin, C.-H., Teng, Y.-J., Chang, C.-M., and Wu, Y.-K., “Study on Mini UAV Designs to Payload Requirements by Airplane Sizing Methodology,” AIAA Infotech@Aerospace - 2010 Conference and Exhibit, AIAA Paper 2010-3507, Atlanta, Georgia, USA, Apr. 20-22, 2010.
[22]Iqbal, L. U. and Sullivan, J. P., “Comprehensive Aircraft Preliminary Design Methodology Applied to Design of MALE UAV”, AIAA Infotech@Aerospace - 2009 Conference and Exhibit, AIAA Paper 2009-431, Orlando, Florida, USA, Jan. 5-8, 2009.
[23]https://www.altiuas.com/drone-surveillance/, Why Use Drones for Security Surveillance, ALTI UAS website. Accessed on: 22/05/2020.
[24]Roskam, J., Airplane Design: Part Ⅰ: Preliminary Sizing of Airplanes, DAR Corporation, Kansas, 2005.
[25]Roskam, J., Airplane Design, Part Ⅱ: Preliminary Configuration Design and Integration of Propulsion System, DAR Corporation, Kansas, 2004.
[26]https://www.af.mil/About-Us/Fact-Sheets/Display/Article/104516/rq-4-global-hawk/, RQ-4 Global Hawk, U.S. Air Force website. Accessed on: 22/05/2020.
[27]https://www.militaryfactory.com/aircraft/detail.asp?aircraft_id=1753, WB Electronics FlyEye Mini UAV, Military Factory website. Accessed on: 22/05/2020.
[28]https://www.flyrotax.com/produkte/detail/rotax-914-ul-f.html, Rotax 914 UL/F, Flyrotax website. Accessed on: 22/05/2020.
[29]Advanced Aircraft Analysis, Version 4.0, DAR Corporation, Kansas, 2018.
[30]Roskam, J. and Lan, C. T., Airplane Aerodynamics and Performance, DAR Corporation, Kansas, 1997.
[31]https://en.wikipedia.org/wiki/File:RQ-1B_3view.jpg, RQ-1 Threeview, Wikipedia website. Accessed on: 22/05/2020.
[32]Roskam, J., Airplane Design: Part Ⅴ: Component Weight Estimation, DAR Corporation, Kansas, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top