參考文獻
[1]A. Brizzi, A. Pellegrini, L. Zhang and Y. Hao, "Woodpile EBG-based antennas for Body Area Networks at 60GHz," 2012 4th International High Speed Intelligent Communication Forum, Nanjing, Jiangsu, 2012, pp. 1-4.
[2]Miss. Kumbhar Snehal Suresh, Depatment Of Technology, Shivaji University, " Review Paper on Electromagnetic Band-Gap (EBG) Structure Antenna Snehal Kumbhar Uday Patil," IJSRD - International Journal for Scientific Research & Development ,vol. 4, Issue 11, 2017, pp. 712-715.
[3]X. Yang, Y. Liu, Y. Xu and S. Gong, "Isolation Enhancement in Patch Antenna Array With Fractal UC-EBG Structure and Cross Slot," in IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 2175-2178, 2017.
[4]H. Attia and O. M. Ramahi, "EBG superstrate for gain and bandwidth enhancement of microstrip array antennas," 2008 IEEE Antennas and Propagation Society International Symposium, San Diego, CA, 2008, pp. 1-4.
[5]C. Ponti, S. Ceccuzzi, G. Schettini and P. Baccarelli, "Tapered EBG superstrates for low-permittivity resonator antennas," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, 2016, pp. 345-346.
[6]A. R. Weily, K. P. Esselle, T. S. Bird and B. C. Sanders, "Linear array of woodpile EBG sectoral horn antennas," in IEEE Transactions on Antennas and Propagation, vol. 54, no. 8, pp. 2263-2274, Aug. 2006.
[7]K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. M. Sigalas, "Photonic band gaps in three dimensions: New layer-by-layer periodic structure, " Solid State Comm., vol. 89, no. 413, 1994.
[8]I. Ederra et al., "A 250 GHz Subharmonic Mixer Design Using EBG Technology," in IEEE Transactions on Antennas and Propagation, vol. 55, no. 11, pp. 2974-2982, Nov. 2007.
[9]P. de Maagt, R. Gonzalo, Y. C. Vardaxoglou and J. -. Baracco, "Electromagnetic bandgap antennas and components for microwave and (Sub)millimeter wave applications," in IEEE Transactions on Antennas and Propagation, vol. 51, no. 10, pp. 2667-2677, Oct. 2003.
[10]B. Martinez et al., "Manufacturing Tolerance Analysis, Fabrication, and Characterization of 3-D Submillimeter-Wave Electromagnetic-Bandgap Crystals," in IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 4, pp. 672-681, April 2007.
[11]L. Tang and T. Yoshie, "Light Localization in Woodpile Photonic Crystal Built via Two-Directional Etching Method," in IEEE Journal of Quantum Electronics, vol. 47, no. 7, pp. 1028-1035, July 2011.
[12]Xiaoyang Wu and Pei Liang, "Research on visible range of three-dimensional photonic crystals with typical lattice structures," Proceedings of 2011 International Conference on Electronics and Optoelectronics, Dalian, 2011, pp. V2-279-V2-282.
[13]I. Ederra et al., "Electromagnetic-Bandgap Waveguide for the Millimeter Range," in IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 7, pp. 1734-1741, July 2010.
[14]A. R. Weily, L. Horvath, K. P. Esselle, B. C. Sanders and T. S. Bird, "A planar resonator antenna based on a woodpile EBG material," in IEEE Transactions on Antennas and Propagation, vol. 53, no. 1, pp. 216-223, Jan. 2005.
[15]A. R. Weily, T. S. Bird, K. P. Esselle and B. C. Sanders, "Woodpile EBG phase shifter," in Electronics Letters, vol. 42, no. 25, pp. 1463-1464, 7 December 2006.
[16]Y. Lee, X. Lu, Y. Hao, S. Yang, C. G. Parini and J. R. G. Evans, "Cylindrical EBG antenna for short range gigabit wireless communications at millimetre-wave bands," in Electronics Letters, vol. 45, no. 3, pp. 136-138, 29 January 2009.
[17]Y. Lee, X. Lu, Y. Hao, S. Yang, J. R. G. Evans and C. G. Parini, "Narrow-beam azimuthally omni-directional millimetre-wave antenna using freeformed cylindrical woodpile cavity," in IET Microwaves, Antennas & Propagation, vol. 4, no. 10, pp. 1491-1499, October 2010.
[18]Young Ju Lee, Junho Yeo, R. Mittra and Wee Sang Park, "Application of electromagnetic bandgap (EBG) superstrates with controllable defects for a class of patch antennas as spatial angular filters," in IEEE Transactions on Antennas and Propagation, vol. 53, no. 1, pp. 224-235, Jan. 2005.
[19]M. J. Al-Hasan, T. A. Denidni and A. R. Sebak, "Millimeter-Wave Compact EBG Structure for Mutual Coupling Reduction Applications," in IEEE Transactions on Antennas and Propagation, vol. 63, no. 2, pp. 823-828, Feb. 2015.
[20]張鎧麟, "新型嵌入式連通柱共平面電磁能隙結構於印刷電路板中雜訊之抑制" 海洋大學碩士論文, July 2014.[21]江瑞文, "結合部分電磁能隙及Z形電源通道結構藉以隔離多層板之雜訊" 臺北科技大學碩士論文, June 2014.[22]黃盟翔, "電磁能隙結構之設計與其於微波之應用" 逢甲大學碩士論文, June 2009.[23]舒耀德, "探討內嵌式共平面電磁能隙結構在印刷電路板中雜訊抑制" 海洋大學碩士論文, July 2012.[24]張信珉, "新寬頻電磁能隙(EBG)結構以抑制地彈雜訊之研究" 中山大學碩士論文第三章, 3-1, April 2004.
[25]“Maxwell''s equations,” Wikipedia, 26-Dec-2019. [Online]. Available: https://en.wikipedia.org/wiki/Maxwell''s_equations. [Accessed: 28-Dec-2019].
[26]“Hamilton–Jacobi equation,” Wikipedia, 10-Dec-2019. [Online]. Available: https://en.wikipedia.org/wiki/Hamilton–Jacobi_equation. [Accessed: 28-Dec-2019].
[27]“Schrödinger equation,” Wikipedia, 27-Dec-2019. [Online]. Available: https://en.wikipedia.org/wiki/Schrödinger_equation. [Accessed: 28-Dec-2019].
[28]J. D. Joannopoulos, R. D. Meade, J. N. Winn, "Photonic Crystals-Molding the Flow of Light, " Princeton University Press, 41, William Street, Princeton, New Jersey 08540, p. 6, 1995.
[29]Mahesh M. Pai, "Microphotonic Device Fabrication In Silver Photodoped Chalcogenide Glasses and Polymers", M.Sc. Thesis, Department of Electrical & Computer Engineering, University of Alberta, January 2006.
[30]Susumu Noda, Katsuhiro Tomoda, Noritsugu Yamamoto, Alongkarn Chutinan " Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths," Science, Vol. 289, Issue 5479, pp. 604-606, Jul 2000.
[31]“Band gap,” Wikipedia, 11-Dec-2019. [Online]. Available: https://en.wikipedia.org/wiki/Band_gap. [Accessed: 28-Dec-2019].