(3.235.108.188) 您好!臺灣時間:2021/03/03 19:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李卉晴
研究生(外文):Huei-Cing Li
論文名稱:使用合成氫錳氧化物顆粒於循環固定床內鈷離子吸附與動力探討之研究
論文名稱(外文):Cobalt Adsorption and Kinetic Study by Using Synthesized Hydrogen Manganese Oxide (HMO) Granules in a Recycle Fixed Bed
指導教授:王榮基王榮基引用關係
指導教授(外文):Rong-Chi Wang
口試委員:王榮基
口試委員(外文):Rong-Chi Wang
口試日期:2020-01-16
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程與生物科技學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:120
中文關鍵詞:鋰錳氧化物氫錳氧化物固態合成法造粒水玻璃循環固定床
外文關鍵詞:granulationsolid-state methodhydrogen manganese oxide (HMO)lithium manganese oxide (LMO)cobaltwater glassrecycle fixed bed
相關次數:
  • 被引用被引用:0
  • 點閱點閱:54
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本實驗主要目的是在循環固定床中使用顆粒狀氫錳氧化物,以去除水溶液中鈷離子之研究。尖晶石鋰錳氧化物粉末係使用碳酸鋰和碳酸錳作為前驅物以固態法製備而成。並使用水玻璃粘合劑對LMO粉末進行造粒。而後經0.3N鹽酸酸洗以轉化成氫錳氧化物(HMO)顆粒。由XRD、 SEM、和EDS來確定吸附劑的晶體結構、形態和物理性質。
經由XRD分析的結果,粉末狀鋰錳氧化物在800oC煅燒溫度下展現出高的尖晶石純相。而顆粒狀氫錳氧化物加入60%水玻璃在500oC煅燒溫度下也展現出高的尖晶石純相。其吸附劑的吸附性能由 ICP-OES 測得水溶液鈷離子濃度來進行評估。
以HMO顆粒吸附劑在循環固定床下探討在不同操作條件如吸附劑用量,流率和溫度對於鈷離子吸附之能力。由實驗中得知HMO顆粒除去鈷的效果隨著反應溫度和吸附劑用量及流率的增加而增加。在循環固定床下,HMO顆粒之吸附過程利用一階速率方程式與鈷離子吸附能力之實驗數據相當符合。其高度的顆粒穩定性顯示HMO是一種良好的材料以去除水溶液鈷離子,故有良好的回收再利用特性以達到永續發展的效果。
This study was to adsorption of cobalt ions solution by using hydrogen manganese oxide granule in a recycle fixed bed. Spinel lithium manganese oxide material was prepared with solid-state method using lithium carbonate and manganese carbonate as the precursors. The LMO powder was granulated using a water glass binder. It was then acid washed with 0.3 N hydrochloric acid to convert LMO granule to manganese oxide (HMO) granule. Those materials were characterized by X-ray diffraction spectroscopy (XRD), Scanning Electron Microscopy with energy dispersive X-ray microanalysis (SEM), and Energy Dispersive Spectrometer (EDS).
XRD patterns show that the spinel LMO powder prepared at a calcination temperature of 800°C has a higher spinel pure phase. The HMO granule when added to 60% water glass, exhibits a high spinel purity phase at a calcination temperature of 500 °C. The cobalt adsorption capacities of adsorbents were evaluated by ICP-OES to detect the concentration of Co2+ in aqueous solution.
The ability to adsorb cobalt ions under different operating conditions such as adsorbent amount, flow rate and temperature was investigated using a recycle fixed bed in continuous system with HMO granule adsorbents. It is known from experiments that the cobalt adsorption capacities to HMO granule increases with the increase of reaction temperature, the amount of absorbent and flow rate. The adsorption process using the first-order rate with r=-K_1 (C-C_e) can fit well the experimental data of cobalt ion adsorption in a recycle fixed bed. The high particle stability shows that HMO granule can be a good material to remove cobalt ions from aqueous solution.
ACKNOWLEDGEMENTS i
ABSTRACT ii
摘要 iii
TABLE OF CONTENT iv
LIST OF TABLES vii
LIST OF FIGURES vii
NOMENCLATURE xi
CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Objects and scope 10
CHAPTER 2 LITERATURE SURVEY 11
2.1 Basic cell chemistry 11
2.1.1 Lithium-metal systems 11
2.1.2 Lithium-ion batteries 13
2.2 Positive electrode materials 16
2.2.1 Transition metal oxides 20
2.2.2 Cathode materials 20
2.2.3 Spinel Lithium manganese oxide (LMO) 24
2.3 Lithium ion battery of recycling processes 27
2.3.1 Pretreatment method 27
2.3.2 Pyrometallurgical process 29
2.3.3 Hydrometallurgical process 30
2.4 Ion-sieve effect 35
2.5 Granulation of LMO powder 42
2.6 The fixed-bed column adsorption 45
2.6.1 Fixed-bed column adsorption experiments 46
2.6.2 Adsorption of metal ions 47
2.6.3 Evaluation of the mechanism of metal ion adsorption in a fixed bed column 51
2.6.4 Breakthrough curve modelling 51
CHAPTER 3 EXPERIMENTAL 55
3.1 Preparation of adsorbent 55
3.1.1 Preparation of spinel lithium manganese oxide (LMO) powder 55
3.1.2 Preparation of spinel lithium manganese oxide (LMO) granule 59
3.1.3 Preparation of HMO granule by acid treatment (Ryu et al., 2013) 61
3.2 Experimental procedure in a recycle fixed bed 65
3.2.1 Blank experiment 67
3.2.2 Cobalt adsorption by HMO granule 68
3.3 Characteristic analysis of adsorbent of HMO granule 68
3.3.1 X-Ray diffraction analysis 70
3.3.2 Scanning electron microscopy analysis 70
3.3.3 Inductively coupled plasma optical emission spectrometer analysis 71
CHAPTER 4 KIENETIC MODELLING OF RECYCLE FIXED BED 72
Kinetic Modelling 72
CHAPTER 5 RESULTS AND DISCUSSION 76
5.1 Characterizations of adsorbent 76
5.1.1 XRD patterns of the prepared adsorbents 76
5.1.2 SEM properties of the prepared adsorbent 82
5.1.3 EDS properties of the prepared adsorbent 86
5.2 Effect of calcination temperature in HMO granule stability 89
5.3 Adsorption performance of HMO granule with different water glass content 91
5.4 Adsorption experiment in recycle fixed bed 94
5.4.1 Effect of adsorbent amount 94
5.4.2 Effect of flow rate 94
5.4.3 Effect of temperature 96
5.4.4 Adsorption kinetic modelling 98
CHAPTER 6 CONCLUSIONS 106
REFERENCES 107
APPENDIX A 117
APPENDIX B 120
Ali, I. (2018). Microwave assisted economic synthesis of multi walled carbon nanotubes for arsenic species removal in water: Batch and column operations. Journal of Molecular Liquids, 271, 677–685. doi: 10.1016/j.molliq.2018.09.021
Awual, M. R., Ismael, M., & Yaita, T. (2014). Efficient detection and extraction of cobalt(II) from lithium ion batteries and wastewater by novel composite adsorbent. Sensors and Actuators B: Chemical, 191, 9–18. doi: 10.1016/j.snb.2013.09.076
Biswas, S., & Mishra, U. (2015). Continuous Fixed-Bed Column Study and Adsorption Modeling: Removal of Lead Ion from Aqueous Solution by Charcoal Originated from Chemical Carbonization of Rubber Wood Sawdust. Journal of Chemistry, 2015, 1–9. doi: 10.1155/2015/907379
Bohart, G. S., & Adams, E. Q. (1920). Some Aspects Of The Behavior Of Charcoal With Respect To Chlorine.1. Journal of the American Chemical Society, 42(3), 523–544. doi: 10.1021/ja01448a018
Castillo, S., Ansart, F., Laberty-Robert, C., Portal J. (2002). Advances in the recovering of spent lithium battery compounds. Journal of Power Sources, 112(1), 247–254. doi: 10.1016/s0378-7753(02)00361-0
Chen, N., Zhang, Z., Feng, C., Li, M., Chen, R., & Sugiura, N. (2011). Investigations on the batch and fixed-bed column performance of fluoride adsorption by Kanuma mud. Desalination, 268(1-3), 76–82. doi: 10.1016/j.desal.2010.09.053
Chen, S., Yue, Q., Gao, B., Li, Q., Xu, X., & Fu, K. (2012). Adsorption of hexavalent chromium from aqueous solution by modified corn stalk: A fixed-bed column study. Bioresource Technology, 113, 114–120. doi: 10.1016/j.biortech.2011.11.110
Chu, K. H. (2010). Fixed bed sorption: Setting the record straight on the Bohart–Adams and Thomas models. Journal of Hazardous Materials, 177(1-3), 1006–1012. doi: 10.1016/j.jhazmat.2010.01.019
Chung, Y.-S., Yoon, M.-B., & Kim, H.-S. (2004). On Climate Variations and Changes Observed in South Korea. Climatic Change, 66(1/2), 151–161. doi: 10.1023/b:clim.0000043141.54763.f8
Cokely, E. T., Galesic, M., Schulz, E., Ghazal, S., & Garcia-Retamero, R. (2012). Measuring risk literacy: The Berlin Numeracy Test. Judgment and Decision Making, 7(1), 25-47. doi: 10.1037/t45862-000
Chitrakar, R., Kanoh, H., Miyai, Y., Ooi, K. (2000). A New Type of Manganese Oxide (MnO2·0.5H2O) Derived from Li1.6Mn1.6O4 and Its Lithium Ion-Sieve Properties. Chemistry of Materials, 12(10), 3151-3157. doi: 10.1021/cm0000191
Du, Z. H., Jia, M. C., & Men, J. F. (2014). Removal of Cesium from Aqueous Solution Using PAN-Based Ferrocyanide Composite Spheres: Adsorption on a Fixed-Bed Column. Applied Mechanics and Materials, 496-500, 259–263. doi: 10.4028/www.scientific.net/amm.496-500.259
Espinosa, D. C. R., Bernardes, A. M., & Tenório, J. A. S. (2004). An overview on the current processes for the recycling of batteries. Journal of Power Sources, 135(1-2), 311–319. doi: 10.1016/j.jpowsour.2004.03.083
Fergus, J. W. (2010). Recent developments in cathode materials for lithium ion batteries. Journal of Power Sources, 195(4), 939–954. doi: 10.1016/j.jpowsour.2009.08.089
Furusawa, S., Tabuchi, H., & Tsurui, T. (2007). Ionic conductivity of lithium alumino-silicate thin films on SiO2 glass and Al2O3 substrates. Solid State Ionics, 178(15-18), 1033–1038. doi: 10.1016/j.ssi.2007.05.008
Gaines, L. (2018). Lithium-ion battery recycling processes: Research towards a sustainable course. Sustainable Materials and Technologies, 17, e00068 doi: 10.1016/j.susmat.2018.e00068
Gaines, L., Nelson, P. (2010). Lithium-ion batteries: examining material demand and recycling issues. Argonne National Laboratory. Accessed 30 Nov 2017 https://anl.box.com/s/ywkdwjaqsc61vtqkakhmhg06tm3adfgl.
Granata, G., Pagnanelli, F., Moscardini, E., Takacova, Z., Havlik, T., & Toro, L. (2012). Simultaneous recycling of nickel metal hydride, lithium ion and primary lithium batteries: Accomplishment of European Guidelines by optimizing mechanical pre-treatment and solvent extraction operations. Journal of Power Sources, 212, 205–211. doi: 10.1016/j.jpowsour.2012.04.016
Gratz, E., Sa, Q., Apelian, D., & Wang, Y. (2014). A closed loop process for recycling spent lithium ion batteries. Journal of Power Sources, 262, 255–262. doi: 10.1016/j.jpowsour.2014.03.126
Gritti, F., & Guiochon, G. (2005). Effect of the flow rate on the measurement of adsorption data by dynamic frontal analysis. Journal of Chromatography A, 1069(1), 31–42. doi: 10.1016/j.chroma.2004.08.129
Han, Y., Kim, H., & Park, J. (2012). Millimeter-sized spherical ion-sieve foams with hierarchical pore structure for recovery of lithium from seawater. Journal of Chemical Engineering, 210, 482–489. doi: 10.1016/j.cej.2012.09.019
He, J., Cui, A., Ni, F., Deng, S., Shen, F., & Yang, G. (2018). A novel 3D yttrium based-graphene oxide-sodium alginate hydrogel for remarkable adsorption of fluoride from water. Journal of Colloid and Interface Science, 531, 37–46. doi: 10.1016/j.jcis.2018.07.017
Hong, S.-B., Im, M.-H., Kim, J.-W., Park, E.-J., Shin, M.-S., Kim, B.-N., … Cho, S.-C. (2015). Environmental Lead Exposure and Attention Deficit/Hyperactivity Disorder Symptom Domains in a Community Sample of South Korean School-Age Children. Environmental Health Perspectives, 123(3), 271–276. doi: 10.1289/ehp.1307420
Hong, H.-J., Park, I.-S., Ryu, T., Ryu, J., Kim, B.-G., & Chung, K.-S. (2013). Granulation of Li1.33Mn1.67O4 (LMO) through the use of cross-linked chitosan for the effective recovery of Li from seawater. Chemical Engineering Journal, 234, 16–22. doi: 10.1016/j.cej.2013.08.060
Hong, H.-J., Park, I.-S., Ryu, J., Ryu, T., Kim, B.-G., & Chung, K.-S. (2015). Immobilization of hydrogen manganese oxide (HMO) on alpha-alumina bead (AAB) to effective recovery of Li from seawater. Chemical Engineering Journal, 271, 71–78. doi: 10.1016/j.cej.2015.02.023
Huang, B., Pan, Z. F., Su, X. G., & An, L. A., (2018). Recycling of lithium-ion batteries: Recent advances and perspectives. Journal of Power Sources, 399, 274-286. doi: 10.1016/j.jpowsour.2018.07.116
Kang, M. J. (2010). Measuring social media credibility: A study on a Measure of Blog Credibility. Institute for Public Relations, https://instituteforpr.org/measuring-blog-credibility/
Kumar, D., Pandey, L. K., & Gaur, J. (2016). Metal sorption by algal biomass: From batch to continuous system. Algal Research, 18, 95–109. doi: 10.1016/j.algal.2016.05.026
Kurzweil, P., & Brandt, K. (2019). Chapter 3 - Overview of Rechargeable Lithium Battery Systems. In Jürgen Garche & Klaus Brandt (eds.), Electrochemical Power Sources: Fundamentals, Systems, and Applications (47–82). Elsevier. doi: 10.1016/b978-0-444-63777-2.00003-7
Lee C, Kim J, Kang J, Kim S, Park S, Lee S, Choi J (2015). Comparative analysis of fxed-bed sorption models using phosphate breakthrough curves in slag flter media. Desalination Water Treat, 55(7), 1795-1805. doi: 10.1080/19443994.2014.930698
Li, L., Ge, J., Chen, R., Wu, F., Chen, S., & Zhang, X. (2010). Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Waste Management, 30(12), 2615–2621. doi: 10.1016/j.wasman.2010.08.008
Li, L., Zhai, L., Zhang, X., Lu, J., Chen, R., Wu, F., & Amine, K. (2014). Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process. Journal of Power Sources, 262, 380–385. doi: 10.1016/j.jpowsour.2014.04.013
Li, L., Qu, W., Zhang, X., Lu, J., Chen, R., Wu, F., & Amine, K. (2015). Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries. Journal of Power Sources, 282, 544–551. doi: 10.1016/j.jpowsour.2015.02.073
Li, X., Zhang, J., Song, D., Song, J., & Zhang, L. (2017). Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries. Journal of Power Sources, 345, 78–84. doi: 10.1016/j.jpowsour.2017.01.118
Lo, K. H., Shek, C. H., & Lai, J. K. L. (2009). Recent developments in stainless steels. Materials Science and Engineering: R: Reports, 65, 39-104. doi: 10.1016/j.mser.2009.03.001
Lv, W., Wang, Z., Cao, H., Sun, Y., Zhang, Y., Sun, Z. (2017). A critical review and analysis on the recycling of spent lithium-ion batteries. ACS Sustainable Chemistry & Engineering, 6(2), 1504-1521. doi: 10.1021/ acssuschemeng.7b03811
Ma, L.-W., Chen, B.-Z., Shi, X.-C., Zhang, W., & Zhang, K. (2010). Stability and Li extraction/adsorption properties of LiMxMn2−xO4 (M=Ni, Al, Ti; 0≤x≤1) in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 369(1-3), 88–94. doi: 10.1016/j.colsurfa.2010.08.016
Manohar, D., Noeline, B., & Anirudhan, T. (2006). Adsorption performance of Al-pillared bentonite clay for the removal of cobalt(II) from aqueous phase. Applied Clay Science, 31(3-4), 194–206. doi: 10.1016/j.clay.2005.08.008
Mishra, D., Kim, D.-J., Ralph, D., Ahn, J.-G., & Rhee, Y.-H. (2008). Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Management, 28(2), 333–338. doi: 10.1016/j.wasman.2007.01.010
Nishi, Y. (2001). The development of lithium ion secondary batteries. The Chemical Record, 1(5), 406–413. doi: 10.1016/s0378-7753(01)00887-4
Nishi, Y. (2001). Lithium ion secondary batteries; past 10 years and the future. Journal of Power Sources, 100(1-2), 101–106. doi: 10.1002/tcr.1024
Noerochim, L., Satriawangsa, G. A., Susanti, D., & Widodo, A. (2015). Synthesis and Characterization of Lithium Manganese Oxide with Different Ratio of Mole on Lithium Recovery Process from Ge-othermal Fluid of Lumpur Sidoarjo. Journal of Materials Science and Chemical Engineering, 03(11), 56–62. doi: 10.4236/msce.2015.311007
Ooi, K., Miyai, Y., Katoh, S., Maeda, H., & Abe, M. (1989). Topotactic lithium(1 ) insertion to .lambda.-manganese dioxide in the aqueous phase. Langmuir, 5(1), 150–157. doi: 10.1021/la00085a028
Owner, D., & Rohweder, D. A. (2003). Distribution and habitat of Pied Oystercatchers (Haematopus longirostris) inhabiting ocean beaches in northern New South Wales. Emu-Austral Ornithology, 103(2), 163–169. doi: 10.1071/mu01053
Pant, D., & Dolker, T. (2017). Green and facile method for the recovery of spent Lithium Nickel Manganese Cobalt Oxide (NMC) based Lithium ion batteries. Waste Management, 60, 689–695. doi: 10.1016/j.wasman.2016.09.039
Patel, H. (2019). Fixed-bed column adsorption study: a comprehensive review. Applied Water Science, 9, 45 doi: 10.1007/s13201-019-0927-7
Ren, G., Xiao, S., Xie, M., Pan, B., Fan, Y., Wang, F., & Xia, X. (2017). Recovery of Valuable Metals from Spent Lithium-Ion Batteries by Smelting Reduction Process Based on MnO–SiO2–Al2O3 Slag System. Journal of Sustainable Metallurgy, 3(4), 703–710. doi: 10.1007/s40831-017-0131-7
Rengaraj, S., & Moon, S. H. (2002). Kinetics of adsorption of Co(II) removal from water and wastewater by ion exchange resins. Water Research, 36(7), 1783–1793. doi: 10.1016/s0043-1354(01)00380-3
Rozada, F., Otero, M., García, A., & Morán, A. (2007). Application in fixed-bed systems of adsorbents obtained from sewage sludge and discarded tyres. Dyes and Pigments, 72(1), 47–56. doi: 10.1016/j.dyepig.2005.07.016
Ruthven, D.M. (1984) Principle of Adsorption and Adsorption Processes. Chap. 2-3, John Wiley & Sons, New York.
Ryu, T., Shin, J., Ryu, J., Park, I., Hong, H., Kim, B.-G., & Chung, K.-S. (2013). Preparation and Characterization of a Cylinder-Type Adsorbent for the Recovery of Lithium from Seawater. Materials Transactions, 54(6), 1029–1033. doi: 10.2320/matertrans.m2013028
Sahel, M., & Ferrandon-Dusart, O. (1993). Adsorption dynamique en phase liquide sur charbon actif : comparaison et simplification de différents modèles. Revue Des Sciences De Leau, 6(1), 63–80. doi: 10.7202/705166ar
Shin, S. M., Kim, N. H., Sohn, J. S., Yang, D. H., & Kim, Y. H. (2005). Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy, 79(3-4), 172–181. doi: 10.1016/j.hydromet.2005.06.004
Sindhu, M., Begum, K. M. M. S., & Sugashini, S. (2012). A comparative study of surface modification in carbonized rice husk by acid treatment. Desalination and Water Treatment, 45(1-3), 170–176. doi: 10.1080/19443994.2012.692039
Thackeray, M. M., de Kock, A., Rossouw, M. H. Liles, D., Bittihn, R., & Hoge, D. (1992). Spinel Electrodes from the Li-Mn-O System for Rechargeable Lithium Battery Applications. Journal of The Electrochemical Society, 139(2), 363-366. doi: 10.1149/1.2069222
Thomas, W. J., & Crittenden, B. (1998). Processes and cycles. In W. John Thomas and Barry Crittenden (eds.), Adsorption Technology & Design (96–134). Butterworth-Heinemann, Oxford. doi: 10.1016/b978-075061959-2/50006-9
Umeno, A., Miyai, Y., Takagi, N., Chitrakar, R., Sakane, K., & Ooi, K. (2002). Preparation and Adsorptive Properties of Membrane-Type Adsorbents for Lithium Recovery from Seawater. Industrial & Engineering Chemistry Research, 41(17), 4281–4287. doi: 10.1021/ie010847j
Wakihara, M. (2001). Recent developments in lithium ion batteries. Materials Science and Engineering: R: Reports, 33(4), 109-134 doi: 10.1016/S0927-796X(01)00030-4
Wang, R.-C., Lin, Y.-C., & Wu, S.-H. (2009). A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries. Hydrometallurgy, 99(3-4), 194–201. doi: 10.1016/j.hydromet.2009.08.005
Whittingham, M. S. (2004). Lithium Batteries and Cathode Materials. ChemInform, 35(50). doi: 10.1002/chin.200450266
Witek-Krowiak, A., Chojnacka, K., Podstawczyk, D., Dawiec, A., & Pokomeda, K. (2014). Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process. Bioresource Technology, 160, 150–160. doi: 10.1016/j.biortech.2014.01.021
Xavier, A. L. P., Adarme, O. F. H., Furtado, L. M., Ferreira, G. M. D., Silva, L. H. M. D., Gil, L. F., & Gurgel, L. V. A. (2018). Modeling adsorption of copper(II), cobalt(II) and nickel(II) metal ions from aqueous solution onto a new carboxylated sugarcane bagasse. Part II: Optimization of monocomponent fixed-bed column adsorption. Journal of Colloid and Interface Science, 516, 431–445. doi: 10.1016/j.jcis.2018.01.068
Xiao, J., Li, J., & Xu, Z. (2017). Novel Approach for in Situ Recovery of Lithium Carbonate from Spent Lithium Ion Batteries Using Vacuum Metallurgy. Environmental Science & Technology, 51(20), 11960–11966. doi: 10.1021/acs.est.7b02561
Xiao, J., Li, J., & Xu, Z. (2017). Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy. Journal of Hazardous Materials, 338, 124–131. doi: 10.1016/j.jhazmat.2017.05.024
Xu, H., Song, J., Luo, H., Zhang, Y., Li, Q., Zhu, Y., …Chen, S. (2016). Analysis of the genome sequence of the medicinal plant Salvia miltiorrhiza. Molecular Plant, 9(6), 949-952. doi: 10.1016/j.molp.2016.03.010
Xu, J., Thomas, H., Francis, R. W., Lum, K. R., Wang, J., & Liang, B. (2008). A review of processes and technologies for the recycling of lithium-ion secondary batteries. Journal of Power Sources, 177(2), 512–527. doi: 10.1016/j.jpowsour.2007.11.074
Yu, C. Y., Chen, C. L., Chen, H. M., Lin, H. K., & Liang, Y. M. (2018). "Integrated fan-out package and manufacturing method thereof." In.: Google Patents.
Zaini, H., Abubakar, S., Rihayat, T., & Suryani, S. (2018). Adsorption and kinetics study of manganesse (II) in waste water using vertical column method by sugar cane bagasse. IOP Conference Series: Materials Science and Engineering, 334, 012025. doi: 10.1088/1757-899x/334/1/012025
Zhang, T., He, Y., Wang, F., Li, H., Duan, C., & Wu, C. (2014). Surface analysis of cobalt-enriched crushed products of spent lithium-ion batteries by X-ray photoelectron spectroscopy. Separation and Purification Technology, 138, 21–27. doi: 10.1016/j.seppur.2014.09.033
Zhang, Y., He, Y., Zhang, T., Zhu, X., Feng, Y., Zhang, G., & Bai, X. (2018). Application of Falcon centrifuge in the recycling of electrode materials from spent lithium ion batteries. Journal of Cleaner Production, 202, 736–747. doi: 10.1016/j.jclepro.2018.08.133
Zhu, S., He, W., Li, G., Zhou, X., Huang, J., & Zhang, X. (2011). Recovering copper from spent lithium ion battery by a mechanical separation process. 2011 International Conference on Materials for Renewable Energy & Environment, 1008-1012. doi: 10.1109/icmree.2011.5930972
Zou, H., Gratz, E., Apelian, D., & Wang, Y. (2013). A novel method to recycle mixed cathode materials for lithium ion batteries. Green Chemistry, 15(5), 1183-1191. doi: 10.1039/c3gc40182k
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔