|
Ali, I. (2018). Microwave assisted economic synthesis of multi walled carbon nanotubes for arsenic species removal in water: Batch and column operations. Journal of Molecular Liquids, 271, 677–685. doi: 10.1016/j.molliq.2018.09.021 Awual, M. R., Ismael, M., & Yaita, T. (2014). Efficient detection and extraction of cobalt(II) from lithium ion batteries and wastewater by novel composite adsorbent. Sensors and Actuators B: Chemical, 191, 9–18. doi: 10.1016/j.snb.2013.09.076 Biswas, S., & Mishra, U. (2015). Continuous Fixed-Bed Column Study and Adsorption Modeling: Removal of Lead Ion from Aqueous Solution by Charcoal Originated from Chemical Carbonization of Rubber Wood Sawdust. Journal of Chemistry, 2015, 1–9. doi: 10.1155/2015/907379 Bohart, G. S., & Adams, E. Q. (1920). Some Aspects Of The Behavior Of Charcoal With Respect To Chlorine.1. Journal of the American Chemical Society, 42(3), 523–544. doi: 10.1021/ja01448a018 Castillo, S., Ansart, F., Laberty-Robert, C., Portal J. (2002). Advances in the recovering of spent lithium battery compounds. Journal of Power Sources, 112(1), 247–254. doi: 10.1016/s0378-7753(02)00361-0 Chen, N., Zhang, Z., Feng, C., Li, M., Chen, R., & Sugiura, N. (2011). Investigations on the batch and fixed-bed column performance of fluoride adsorption by Kanuma mud. Desalination, 268(1-3), 76–82. doi: 10.1016/j.desal.2010.09.053 Chen, S., Yue, Q., Gao, B., Li, Q., Xu, X., & Fu, K. (2012). Adsorption of hexavalent chromium from aqueous solution by modified corn stalk: A fixed-bed column study. Bioresource Technology, 113, 114–120. doi: 10.1016/j.biortech.2011.11.110 Chu, K. H. (2010). Fixed bed sorption: Setting the record straight on the Bohart–Adams and Thomas models. Journal of Hazardous Materials, 177(1-3), 1006–1012. doi: 10.1016/j.jhazmat.2010.01.019 Chung, Y.-S., Yoon, M.-B., & Kim, H.-S. (2004). On Climate Variations and Changes Observed in South Korea. Climatic Change, 66(1/2), 151–161. doi: 10.1023/b:clim.0000043141.54763.f8 Cokely, E. T., Galesic, M., Schulz, E., Ghazal, S., & Garcia-Retamero, R. (2012). Measuring risk literacy: The Berlin Numeracy Test. Judgment and Decision Making, 7(1), 25-47. doi: 10.1037/t45862-000 Chitrakar, R., Kanoh, H., Miyai, Y., Ooi, K. (2000). A New Type of Manganese Oxide (MnO2·0.5H2O) Derived from Li1.6Mn1.6O4 and Its Lithium Ion-Sieve Properties. Chemistry of Materials, 12(10), 3151-3157. doi: 10.1021/cm0000191 Du, Z. H., Jia, M. C., & Men, J. F. (2014). Removal of Cesium from Aqueous Solution Using PAN-Based Ferrocyanide Composite Spheres: Adsorption on a Fixed-Bed Column. Applied Mechanics and Materials, 496-500, 259–263. doi: 10.4028/www.scientific.net/amm.496-500.259 Espinosa, D. C. R., Bernardes, A. M., & Tenório, J. A. S. (2004). An overview on the current processes for the recycling of batteries. Journal of Power Sources, 135(1-2), 311–319. doi: 10.1016/j.jpowsour.2004.03.083 Fergus, J. W. (2010). Recent developments in cathode materials for lithium ion batteries. Journal of Power Sources, 195(4), 939–954. doi: 10.1016/j.jpowsour.2009.08.089 Furusawa, S., Tabuchi, H., & Tsurui, T. (2007). Ionic conductivity of lithium alumino-silicate thin films on SiO2 glass and Al2O3 substrates. Solid State Ionics, 178(15-18), 1033–1038. doi: 10.1016/j.ssi.2007.05.008 Gaines, L. (2018). Lithium-ion battery recycling processes: Research towards a sustainable course. Sustainable Materials and Technologies, 17, e00068 doi: 10.1016/j.susmat.2018.e00068 Gaines, L., Nelson, P. (2010). Lithium-ion batteries: examining material demand and recycling issues. Argonne National Laboratory. Accessed 30 Nov 2017 https://anl.box.com/s/ywkdwjaqsc61vtqkakhmhg06tm3adfgl. Granata, G., Pagnanelli, F., Moscardini, E., Takacova, Z., Havlik, T., & Toro, L. (2012). Simultaneous recycling of nickel metal hydride, lithium ion and primary lithium batteries: Accomplishment of European Guidelines by optimizing mechanical pre-treatment and solvent extraction operations. Journal of Power Sources, 212, 205–211. doi: 10.1016/j.jpowsour.2012.04.016 Gratz, E., Sa, Q., Apelian, D., & Wang, Y. (2014). A closed loop process for recycling spent lithium ion batteries. Journal of Power Sources, 262, 255–262. doi: 10.1016/j.jpowsour.2014.03.126 Gritti, F., & Guiochon, G. (2005). Effect of the flow rate on the measurement of adsorption data by dynamic frontal analysis. Journal of Chromatography A, 1069(1), 31–42. doi: 10.1016/j.chroma.2004.08.129 Han, Y., Kim, H., & Park, J. (2012). Millimeter-sized spherical ion-sieve foams with hierarchical pore structure for recovery of lithium from seawater. Journal of Chemical Engineering, 210, 482–489. doi: 10.1016/j.cej.2012.09.019 He, J., Cui, A., Ni, F., Deng, S., Shen, F., & Yang, G. (2018). A novel 3D yttrium based-graphene oxide-sodium alginate hydrogel for remarkable adsorption of fluoride from water. Journal of Colloid and Interface Science, 531, 37–46. doi: 10.1016/j.jcis.2018.07.017 Hong, S.-B., Im, M.-H., Kim, J.-W., Park, E.-J., Shin, M.-S., Kim, B.-N., … Cho, S.-C. (2015). Environmental Lead Exposure and Attention Deficit/Hyperactivity Disorder Symptom Domains in a Community Sample of South Korean School-Age Children. Environmental Health Perspectives, 123(3), 271–276. doi: 10.1289/ehp.1307420 Hong, H.-J., Park, I.-S., Ryu, T., Ryu, J., Kim, B.-G., & Chung, K.-S. (2013). Granulation of Li1.33Mn1.67O4 (LMO) through the use of cross-linked chitosan for the effective recovery of Li from seawater. Chemical Engineering Journal, 234, 16–22. doi: 10.1016/j.cej.2013.08.060 Hong, H.-J., Park, I.-S., Ryu, J., Ryu, T., Kim, B.-G., & Chung, K.-S. (2015). Immobilization of hydrogen manganese oxide (HMO) on alpha-alumina bead (AAB) to effective recovery of Li from seawater. Chemical Engineering Journal, 271, 71–78. doi: 10.1016/j.cej.2015.02.023 Huang, B., Pan, Z. F., Su, X. G., & An, L. A., (2018). Recycling of lithium-ion batteries: Recent advances and perspectives. Journal of Power Sources, 399, 274-286. doi: 10.1016/j.jpowsour.2018.07.116 Kang, M. J. (2010). Measuring social media credibility: A study on a Measure of Blog Credibility. Institute for Public Relations, https://instituteforpr.org/measuring-blog-credibility/ Kumar, D., Pandey, L. K., & Gaur, J. (2016). Metal sorption by algal biomass: From batch to continuous system. Algal Research, 18, 95–109. doi: 10.1016/j.algal.2016.05.026 Kurzweil, P., & Brandt, K. (2019). Chapter 3 - Overview of Rechargeable Lithium Battery Systems. In Jürgen Garche & Klaus Brandt (eds.), Electrochemical Power Sources: Fundamentals, Systems, and Applications (47–82). Elsevier. doi: 10.1016/b978-0-444-63777-2.00003-7 Lee C, Kim J, Kang J, Kim S, Park S, Lee S, Choi J (2015). Comparative analysis of fxed-bed sorption models using phosphate breakthrough curves in slag flter media. Desalination Water Treat, 55(7), 1795-1805. doi: 10.1080/19443994.2014.930698 Li, L., Ge, J., Chen, R., Wu, F., Chen, S., & Zhang, X. (2010). Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Waste Management, 30(12), 2615–2621. doi: 10.1016/j.wasman.2010.08.008 Li, L., Zhai, L., Zhang, X., Lu, J., Chen, R., Wu, F., & Amine, K. (2014). Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process. Journal of Power Sources, 262, 380–385. doi: 10.1016/j.jpowsour.2014.04.013 Li, L., Qu, W., Zhang, X., Lu, J., Chen, R., Wu, F., & Amine, K. (2015). Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries. Journal of Power Sources, 282, 544–551. doi: 10.1016/j.jpowsour.2015.02.073 Li, X., Zhang, J., Song, D., Song, J., & Zhang, L. (2017). Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries. Journal of Power Sources, 345, 78–84. doi: 10.1016/j.jpowsour.2017.01.118 Lo, K. H., Shek, C. H., & Lai, J. K. L. (2009). Recent developments in stainless steels. Materials Science and Engineering: R: Reports, 65, 39-104. doi: 10.1016/j.mser.2009.03.001 Lv, W., Wang, Z., Cao, H., Sun, Y., Zhang, Y., Sun, Z. (2017). A critical review and analysis on the recycling of spent lithium-ion batteries. ACS Sustainable Chemistry & Engineering, 6(2), 1504-1521. doi: 10.1021/ acssuschemeng.7b03811 Ma, L.-W., Chen, B.-Z., Shi, X.-C., Zhang, W., & Zhang, K. (2010). Stability and Li extraction/adsorption properties of LiMxMn2−xO4 (M=Ni, Al, Ti; 0≤x≤1) in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 369(1-3), 88–94. doi: 10.1016/j.colsurfa.2010.08.016 Manohar, D., Noeline, B., & Anirudhan, T. (2006). Adsorption performance of Al-pillared bentonite clay for the removal of cobalt(II) from aqueous phase. Applied Clay Science, 31(3-4), 194–206. doi: 10.1016/j.clay.2005.08.008 Mishra, D., Kim, D.-J., Ralph, D., Ahn, J.-G., & Rhee, Y.-H. (2008). Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Management, 28(2), 333–338. doi: 10.1016/j.wasman.2007.01.010 Nishi, Y. (2001). The development of lithium ion secondary batteries. The Chemical Record, 1(5), 406–413. doi: 10.1016/s0378-7753(01)00887-4 Nishi, Y. (2001). Lithium ion secondary batteries; past 10 years and the future. Journal of Power Sources, 100(1-2), 101–106. doi: 10.1002/tcr.1024 Noerochim, L., Satriawangsa, G. A., Susanti, D., & Widodo, A. (2015). Synthesis and Characterization of Lithium Manganese Oxide with Different Ratio of Mole on Lithium Recovery Process from Ge-othermal Fluid of Lumpur Sidoarjo. Journal of Materials Science and Chemical Engineering, 03(11), 56–62. doi: 10.4236/msce.2015.311007 Ooi, K., Miyai, Y., Katoh, S., Maeda, H., & Abe, M. (1989). Topotactic lithium(1 ) insertion to .lambda.-manganese dioxide in the aqueous phase. Langmuir, 5(1), 150–157. doi: 10.1021/la00085a028 Owner, D., & Rohweder, D. A. (2003). Distribution and habitat of Pied Oystercatchers (Haematopus longirostris) inhabiting ocean beaches in northern New South Wales. Emu-Austral Ornithology, 103(2), 163–169. doi: 10.1071/mu01053 Pant, D., & Dolker, T. (2017). Green and facile method for the recovery of spent Lithium Nickel Manganese Cobalt Oxide (NMC) based Lithium ion batteries. Waste Management, 60, 689–695. doi: 10.1016/j.wasman.2016.09.039 Patel, H. (2019). Fixed-bed column adsorption study: a comprehensive review. Applied Water Science, 9, 45 doi: 10.1007/s13201-019-0927-7 Ren, G., Xiao, S., Xie, M., Pan, B., Fan, Y., Wang, F., & Xia, X. (2017). Recovery of Valuable Metals from Spent Lithium-Ion Batteries by Smelting Reduction Process Based on MnO–SiO2–Al2O3 Slag System. Journal of Sustainable Metallurgy, 3(4), 703–710. doi: 10.1007/s40831-017-0131-7 Rengaraj, S., & Moon, S. H. (2002). Kinetics of adsorption of Co(II) removal from water and wastewater by ion exchange resins. Water Research, 36(7), 1783–1793. doi: 10.1016/s0043-1354(01)00380-3 Rozada, F., Otero, M., García, A., & Morán, A. (2007). Application in fixed-bed systems of adsorbents obtained from sewage sludge and discarded tyres. Dyes and Pigments, 72(1), 47–56. doi: 10.1016/j.dyepig.2005.07.016 Ruthven, D.M. (1984) Principle of Adsorption and Adsorption Processes. Chap. 2-3, John Wiley & Sons, New York. Ryu, T., Shin, J., Ryu, J., Park, I., Hong, H., Kim, B.-G., & Chung, K.-S. (2013). Preparation and Characterization of a Cylinder-Type Adsorbent for the Recovery of Lithium from Seawater. Materials Transactions, 54(6), 1029–1033. doi: 10.2320/matertrans.m2013028 Sahel, M., & Ferrandon-Dusart, O. (1993). Adsorption dynamique en phase liquide sur charbon actif : comparaison et simplification de différents modèles. Revue Des Sciences De Leau, 6(1), 63–80. doi: 10.7202/705166ar Shin, S. M., Kim, N. H., Sohn, J. S., Yang, D. H., & Kim, Y. H. (2005). Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy, 79(3-4), 172–181. doi: 10.1016/j.hydromet.2005.06.004 Sindhu, M., Begum, K. M. M. S., & Sugashini, S. (2012). A comparative study of surface modification in carbonized rice husk by acid treatment. Desalination and Water Treatment, 45(1-3), 170–176. doi: 10.1080/19443994.2012.692039 Thackeray, M. M., de Kock, A., Rossouw, M. H. Liles, D., Bittihn, R., & Hoge, D. (1992). Spinel Electrodes from the Li-Mn-O System for Rechargeable Lithium Battery Applications. Journal of The Electrochemical Society, 139(2), 363-366. doi: 10.1149/1.2069222 Thomas, W. J., & Crittenden, B. (1998). Processes and cycles. In W. John Thomas and Barry Crittenden (eds.), Adsorption Technology & Design (96–134). Butterworth-Heinemann, Oxford. doi: 10.1016/b978-075061959-2/50006-9 Umeno, A., Miyai, Y., Takagi, N., Chitrakar, R., Sakane, K., & Ooi, K. (2002). Preparation and Adsorptive Properties of Membrane-Type Adsorbents for Lithium Recovery from Seawater. Industrial & Engineering Chemistry Research, 41(17), 4281–4287. doi: 10.1021/ie010847j Wakihara, M. (2001). Recent developments in lithium ion batteries. Materials Science and Engineering: R: Reports, 33(4), 109-134 doi: 10.1016/S0927-796X(01)00030-4 Wang, R.-C., Lin, Y.-C., & Wu, S.-H. (2009). A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries. Hydrometallurgy, 99(3-4), 194–201. doi: 10.1016/j.hydromet.2009.08.005 Whittingham, M. S. (2004). Lithium Batteries and Cathode Materials. ChemInform, 35(50). doi: 10.1002/chin.200450266 Witek-Krowiak, A., Chojnacka, K., Podstawczyk, D., Dawiec, A., & Pokomeda, K. (2014). Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process. Bioresource Technology, 160, 150–160. doi: 10.1016/j.biortech.2014.01.021 Xavier, A. L. P., Adarme, O. F. H., Furtado, L. M., Ferreira, G. M. D., Silva, L. H. M. D., Gil, L. F., & Gurgel, L. V. A. (2018). Modeling adsorption of copper(II), cobalt(II) and nickel(II) metal ions from aqueous solution onto a new carboxylated sugarcane bagasse. Part II: Optimization of monocomponent fixed-bed column adsorption. Journal of Colloid and Interface Science, 516, 431–445. doi: 10.1016/j.jcis.2018.01.068 Xiao, J., Li, J., & Xu, Z. (2017). Novel Approach for in Situ Recovery of Lithium Carbonate from Spent Lithium Ion Batteries Using Vacuum Metallurgy. Environmental Science & Technology, 51(20), 11960–11966. doi: 10.1021/acs.est.7b02561 Xiao, J., Li, J., & Xu, Z. (2017). Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy. Journal of Hazardous Materials, 338, 124–131. doi: 10.1016/j.jhazmat.2017.05.024 Xu, H., Song, J., Luo, H., Zhang, Y., Li, Q., Zhu, Y., …Chen, S. (2016). Analysis of the genome sequence of the medicinal plant Salvia miltiorrhiza. Molecular Plant, 9(6), 949-952. doi: 10.1016/j.molp.2016.03.010 Xu, J., Thomas, H., Francis, R. W., Lum, K. R., Wang, J., & Liang, B. (2008). A review of processes and technologies for the recycling of lithium-ion secondary batteries. Journal of Power Sources, 177(2), 512–527. doi: 10.1016/j.jpowsour.2007.11.074 Yu, C. Y., Chen, C. L., Chen, H. M., Lin, H. K., & Liang, Y. M. (2018). "Integrated fan-out package and manufacturing method thereof." In.: Google Patents. Zaini, H., Abubakar, S., Rihayat, T., & Suryani, S. (2018). Adsorption and kinetics study of manganesse (II) in waste water using vertical column method by sugar cane bagasse. IOP Conference Series: Materials Science and Engineering, 334, 012025. doi: 10.1088/1757-899x/334/1/012025 Zhang, T., He, Y., Wang, F., Li, H., Duan, C., & Wu, C. (2014). Surface analysis of cobalt-enriched crushed products of spent lithium-ion batteries by X-ray photoelectron spectroscopy. Separation and Purification Technology, 138, 21–27. doi: 10.1016/j.seppur.2014.09.033 Zhang, Y., He, Y., Zhang, T., Zhu, X., Feng, Y., Zhang, G., & Bai, X. (2018). Application of Falcon centrifuge in the recycling of electrode materials from spent lithium ion batteries. Journal of Cleaner Production, 202, 736–747. doi: 10.1016/j.jclepro.2018.08.133 Zhu, S., He, W., Li, G., Zhou, X., Huang, J., & Zhang, X. (2011). Recovering copper from spent lithium ion battery by a mechanical separation process. 2011 International Conference on Materials for Renewable Energy & Environment, 1008-1012. doi: 10.1109/icmree.2011.5930972 Zou, H., Gratz, E., Apelian, D., & Wang, Y. (2013). A novel method to recycle mixed cathode materials for lithium ion batteries. Green Chemistry, 15(5), 1183-1191. doi: 10.1039/c3gc40182k
|