跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/19 14:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳劭銘
研究生(外文):Shao-ming Chen
論文名稱:鉑銅/多壁奈米碳管電觸媒之合成與特性研究
論文名稱(外文):Synthesis and Characteristics of PtCu/MWCNTs Electrocatalyst
指導教授:邱郁菁
指導教授(外文):Yuh-Jing Chiou
口試委員:邱郁菁
口試委員(外文):Yuh-Jing Chiou
口試日期:2020-07-15
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程與生物科技學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:78
中文關鍵詞:甲酸甲醇燃料電池
外文關鍵詞:Ptmethanolfuel cellformic acidCu
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
鉑觸媒為應用在直接甲醇燃料電池DMFC或直接甲酸燃料電池DFAFC中,催化特性良好的觸媒,但其價格昂貴且易於被毒化而降低其活性。本研究以不同製程方式合成具固溶相的鉑銅/奈米碳管陽極觸媒,並探討在甲醇及甲酸燃料中的電催化活性,以歸納出較適當之製程條件。
研究中利用硼氫化鈉還原法、多元醇法和X光合成法進行合成,藉由控制pH值作為研究參數,分別為NaBH4硼氫化鈉法pH 1(N)和pH 10 (N10)、polyol多元醇法pH 7 (P7)、x光合成法pH 7 (X7)和pH 10 (X10)五種參數。以SEM、XRD、ICP-OES、Raman、FT-IR檢測其基本特性,並以電化學活性面積(ECSA)和循環伏安法(CV)檢測電催化能力。
實驗結果顯示X7有較小的平均粒徑約為6.0 nm,N和N10約為7-8 nm,P7則有較大的平均粒徑為14.1nm,而以硼氫化鈉法合成的鉑銅/奈米碳管觸媒,其金屬比為1:0.92較接近莫爾比1:1之固溶相,P7則有較佳的結晶性。
根據電化學循環伏安法結果顯示,P7在甲酸中具有穩定的氧化電位及較高的電流值約為210 mA/mg Pt,是所有合成樣品在甲酸中最為優異的。甲醇當中,X7、X10和P7皆具有穩定且均小於商業鉑觸媒的氧化電位,有利於甲醇的電氧化,其中,N10在第60圈的電流表現約為286 mA/mg Pt,是在甲醇中電催化活性最好的觸媒。
Platinum catalyst is used in direct methanol fuel cell DMFC or direct formic acid fuel cell DFAFC, and has good catalytic properties, but it is expensive and easy to be poisoned to reduce its activity. In this study, platinum copper/nanotube anode catalysts with solid solution phase were synthesized by different process methods, and the electrocatalytic activity in methanol and formic acid fuel was discussed to summarize the more appropriate process conditions.
In the study, sodium borohydride reduction method, polyol method and X-ray synthesis method were used for synthesis. By controlling the pH value as the research parameter, Five parameters: Sodium borohydride method pH 1 (N) and pH 10 (N10), polyol method pH 7 (P7), x-ray synthesis pH 7 (X7) and pH 10 (X10). SEM, XRD, ICP-OES, Raman, FT-IR were used to detect the basic characteristics, and the electrochemical active area (ECSA) and cyclic voltammetry (CV) were used to detect the electrocatalytic capability.
Experimental results show that X7 has a smaller average particle size of about 6.0 nm, N and N10 are about 7-8 nm, P7 has a larger average particle size of 14.1 nm, and PtCu/MWCNTs synthesized by the sodium borohydride method, its the metal ratio of 1:0.92 is closer to the solid solution phase of mol ratio 1:1, and P7 has better crystallinity.
According to the results of electrochemical cyclic voltammetry, P7 has a stable oxidation potential in formic acid and a high current value of about 210 mA/mg Pt, which is the most excellent of all synthetic samples in formic acid. Among methanol, X7, X10, and P7 all have stable and less than the oxidation potential of commercial platinum catalysts, which is conducive to the electrical oxidation of methanol. Among them, the current performance of N10 in the 60th cycle is about 286 mA/mg Pt, which is the catalyst with the best electrocatalytic activity in methanol.
摘要I
ABSTRACTII
Table of ContentsIV
List of TablesVI
List of FiguresVII
Chapter 1 Introduction 1
Chapter 2 Literature review 2
2.1 Fuel Cells 2
2.1.1 Introduction of fuel cell 2
2.1.2 Direct Formic Acid Fuel Cells (DFAFCs) 5
2.1.3 Direct Methanol Fuel Cells (DMFCs) 7
2.2 Multi-walled Carbon Nanotubes (MWCNTs) 9
2.2.1 Introduction of Carbon Nanotubes 9
2.2.2 Properties of Carbon Nanotubes 11
2.3 Nanocatalyst for fuel cell 13
2.3.1 Platinum alloy catalysts 13
1. Bifunctional Effect: 14
2. Ligand or Electronic Effect: 15
3. Pt-Pt spacing: 16
2.3.2 The mechanism of methanol electro-oxidation 16
2.3.3 Pt-Cu alloy Catalyst 18
2.4 Methods of metallic nanoparticle preparation 19
Chapter 3 Experimental 21
3.1 Materials 21
3.2 Electrocatalyst Preparation 22
3.2.1. Acid Treatment of MWCNTs 22
3.2.2. Preparation of Pt Cu/AO-MWCNTs catalysts 23
3.3 Specimen Characteristics 29
3.3.1 Raman Scattering Spectroscopy(RS)29
3.3.2 Fourier Transfer Infrared Spectroscopy (FT-IR) 30
3.3.3 Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES) 31
3.3.4 X-ray Diffraction analysis (XRD) 32
3.3.5 Field Emission Scanning Electron Microscope(FESEM) 33
Chapter 4 Results and Discussion 34
4.1 Raman spectroscopy 34
4.2 Fourier Transform Infrared Spectroscopy (FT-IR) 35
4.3 X-ray Diffraction(XRD) 37
4.4 ICP-OES 47
4.5 Field Emission Scanning Electron Microscope (FESEM) 48
4.6 Electrocatalytical Analysis 53
4.6.1 ECSA Measurements 53
4.6.2 CV Measurements 60
Chapter 5 Conclusion 72
[1] Nikhil Gupta and Sumit Talwar. Competition Science Vision, Vol.2, 1999,757.
[2] EG and G Technical services Inc. Fuel Cell Handbook. U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory. 2002, 2-1.
[3] J. Shen, Y. Hu, C. Li, C. Qin, M. Ye, Electrochim. Acta 2008, 53, 7276.
[4] T. Page, R. Johnson, J. Hormes, S. Noding, B. Rambabu, J. Electroanal. Chem. Vol 485, 2000, 34.
[5] James Larminie and Andrew Dicks. Fuel Cell Systems Explained. John Wiley & Sons Ltd. Int. J. Electrochem. Sci., Vol. 6, 2011.
[6] Rejal, S. Z., Masdar, M. S., & Kamarudin, S. K. A parametric study of the direct formic acid fuel cell (DFAFC) performance and fuel crossover. International Journal of Hydrogen Energy. 2014, 39(19), 10267–10274.
[7] M. Morsy Elgohary. Overview of Past, Present and Future Marine Power Plants. J. Marine Sci. Appl. 2013, 12, 219-227.
[8] Chen, C. H., Liou, W. J., Lin, H. M., Wu, S. H., Borodzinski, A., Stobinski, L., & Kedzierzawski, P. Palladium and Palladium Gold Catalysts Supported on MWCNTs for Electrooxidation of Formic Acid. Fuel Cells. 2010, 10(2), 227–233.
[9] Liu, H., Song, C., Zhang, L., Zhang, J., Wang, H., & Wilkinson, D. P. A review of anode catalysis in the direct methanol fuel cell. Journal of Power Sources. 2006, 155(2), 95–110.
[10] Gong, L., Yang, Z., Li, K., Xing, W., Liu, C., & Ge, J. Recent development of methanol electrooxidation catalysts for direct methanol fuel cell. Journal of Energy Chemistry. 2018, 6-8.
[11] Samimi, F., & Rahimpour, M. R. Direct Methanol Fuel Cell. Methanol. 2018, 381–397.
[12] Sumio Iijima, Nature Vol 354, 1991, 56-58.
[13] Saifuddin, N., Raziah, A. Z., and Junizah, A. R. Carbon Nanotubes: A Review on Structure and Their Interaction with Proteins. Journal of Chemistry. 2013, 1–18.
[14] Z. Liu, X. Lin, J.Y. Lee, W.S. Zhang, M. Han, L.M. Gan, Langmuir. 2002, 4054–4060.
[15] C. Wang, M. Waje, X. Wang, J.M. Tang, R.C. Haddon, Y. Yan, Nano Lett. 2004, 345–348.
[16] W. Li, C. Liang, J. Qiu, W. Zhou, H. Han, Z. Wei, G. Sun, Q. Xin, Carbon 2002, 791–794.
[17] H. Tang, J.H. Chen, Z.P. Huang, D.Z. Wang, Z.F. Ren, L.H. Nie, Y.F. Kuang, S.Z. Yao, Carbon Vol 42, 2004 191–197.
[18] T. Matsumoto, T. Komatsu, K. Arai, T. Yamazaki, M. Kijima, H. Shimizu, Y. Takasawa, J. Nakamura, Chem. Commun. 2004, 840–841.
[19] W. Li, C. Liang, J. Qiu, W. Zhou, A. Zhou, Z. Wei, G. Sun, Q. Xin, J. Phys. Chem. B Vol 107, 2003 6292–6299.
[20] Jusys, Z., Kaiser, J., & Behm, R... Composition and activity of high surface area PtRu catalysts towards adsorbed CO and methanol electrooxidation Electrochimica Acta, Vol 47(22-23), 2002, 3693–3706.
[21] Zhao, Y., Fan, L., Ren, J., & Hong, B. Electrodeposition of Pt–Ru and Pt–Ru–Ni nanoclusters on multi-walled carbon nanotubes for direct methanol fuel cell. International Journal of Hydrogen Energy, Vol 39(9), 2014, 4544–4557.
[22] Chen, Y., Zhou, Y., Tang, Y., & Lu, T. Electrocatalytic properties of carbon-supported Pt-Ru catalysts with the high alloying degree for formic acid electrooxidation. Journal of Power Sources, 195(13), 2010, 4129–4134.
[23] Chaudhari, N. K., Hong, Y., Kim, B., Choi, S.-I., & Lee, K. Pt-Cu Based Nanocrystals as the Promising Catalysts for Various Electrocatalytic Reactions. Journal of Materials Chemistry A. 2019.
[24] Solla-Gullón, J., Vidal-Iglesias, F. J., López-Cudero, A., Garnier, E., Feliu, J. M., & Aldaz, A. Shape-dependent electrocatalysis: methanol and formic acid electrooxidation on preferentially oriented Pt nanoparticles. Physical Chemistry Chemical Physics. Vol 25, 2008, 3689.
[25] Markovic NM, Ross PN. Surface science studies of model fuel cell electrocatalysts. Surface Science Reports. Vol 45(4-6), 2002, 121-229.
[26] Yajima T, Uchida H, Watanabe M. In-situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed CO at Pt-Ru alloy. Journal of Physical Chemistry B. Vol 108(8), 2004, 2654-9.
[27] Park KW, Choi JH, Kwon BK, Lee SA, Sung YE, Ha HY, et al. Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. Journal of Physical Chemistry B. Vol 106(8), 2002, 1869-77.
[28] Mukerjee S, McBreen J. An in situ X-ray absorption spectroscopy investigation of the effect of Sn additions to carbon-supported Pt electrocatalysts - Part I. Journal of the Electrochemical Society. Vol 146(2), 1999, 600.
[29] Hamnett, A. Mechanism and electrocatalysis in the direct methanol fuel cell. Catalysis Today, Vol38(4),1997, 445–457.
[30] Moura, A., Fajín, J., Mandado, M., & Cordeiro, M. Ruthenium–Platinum Catalysts and Direct Methanol Fuel Cells (DMFC): A Review of Theoretical and Experimental Breakthroughs. Catalysts, Vol 7(12), 2017, 47.
[31] S K S Sutha S Sellamoni, U Rasheedha Begum, Vinoth Kumar and G Karthikeyan. Demographic Profile of Electrical Burns in a Tertiary Burn Care Centre. Vol.04, Issue 02 (2016).
[32] Saravanan, G., Khobragade, R., Chand Nagar, L., & Labhsetwar, N. Ordered intermetallic Pt–Cu nanoparticles for the catalytic CO oxidation reaction. RSC Advances, Vol 6(88), 2016, 85634–85642.
[33] Kakati, N., Lee, S. H., Maiti, J., & Yoon, Y. S. Ru decorated Pt nanoparticles by a modified polyol process for enhanced catalytic activity for methanol oxidation. Surface Science, 606(21-22), 2012, 1633–1637.
[34] Escudero-Cid, R., Hernández-Fernández, P., Pérez-Flores, J. C., Rojas, S., Garcia-Rodríguez, S., Fatás, E., & Ocón, P. Analysis of performance losses of direct methanol fuel cell with methanol tolerant PtCoRu/C cathode electrode. International Journal of Hydrogen Energy, 37(8), 2012, 7119–7130.
[35] Suda Y, Kaida S, Ozaki M, Shimizu Y, Okabe Y, Tanoue H, Shimizu K, Use of carbon nanocoil as a catalyst support in direct methanol fuel cell. 2014.
[36] Yang, H., Dai, L., Xu, D., Fang, J., & Zou, S. Electrooxidation of methanol and formic acid on PtCu nanoparticles. Electrochimica Acta, 55(27), 2010,8000–8004.
[37] Y. Yang, S. Matsubara, L. Xiong, T. Hayakawa, M. Nogami, Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties, J. Phys. Chem. C111 (26), 2007, 9095–9104.
[38] Chiou, Y.-J., Hsu, H.-J., Lin, H.-M., Liou, W.-J., Liou, H.-W., Wu, S.-H., & Chien, S.-H. Synthesis and characterization of Cu–Pt/MWCNTs for use in electrocatalytic applications. Particuology, 9(5), 2011, 522–527.
[39] Jamkhande, P. G., Ghule, N. W., Bamer, A. H., & Kalaskar, M. G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of Drug Delivery Science and Technology. 2019.
[40] M.T. Swihart, Vapor-phase synthesis of nanoparticles, Curr. Opin. Colloid Interface Sci. 8 (1), 2003, 127–133.
[41] Ahmed, D. S., Haider, A. J., & Mohammad, M. R. Comparesion of Functionalization of Multi-Walled Carbon Nanotubes Treated by Oil Olive and Nitric Acid and their Characterization. Energy Procedia, 36, 2013, 1111–1118.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊