跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.248) 您好!臺灣時間:2023/01/28 13:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周于修
研究生(外文):Yu-Shiou Chou
論文名稱:AISI 316L不鏽鋼陰極電弧沉積ZrTiCuN多層膜之特性研究
論文名稱(外文):Study on Characteristics of AISI 316L Stainless Steel Coated ZrTiCuN Multilayered Films by Cathodic Arc Deposition
指導教授:許正勳許正勳引用關係
指導教授(外文):Cheng-Hsun Hsu
口試委員:許正勳
口試委員(外文):Cheng-Hsun Hsu
口試日期:2020-07-29
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:135
中文關鍵詞:AISI 316L 不鏽鋼陰極電弧沉積ZrTiCuN 多層膜負偏壓耐腐蝕耐磨耗抗菌性
外文關鍵詞:Cathodic arc depositionZrTiCuN multilayered filmbias voltagecorrosion resistancewear resistanceAISI 316Lantibacterial resistance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:82
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用316L不鏽鋼作為基材,利用陰極電弧沉積法(cathodic arc deposition, CAD)披覆ZrTiCuN多層陶瓷硬膜,並利用改變偏壓的方式來控制銅(Cu)在多層膜內的含量,並探討在不同銅(Cu)含量下ZrTiCuN薄膜結構、化學組成、硬度試驗、磨耗試驗、腐蝕磨耗試驗、極化試驗、附著性測試及抗菌試驗進行比較,並藉此試驗得到同時具有耐磨耗、耐腐蝕以及抗菌的三抗薄膜。
實驗結果顯示,隨著偏壓值的數值降低時,會使ZrTiCuN中的銅含量有上升的趨勢,隨著銅含量的增加,薄膜的硬度也隨之上升。粗糙度方面,因為ZrTiN沒有Cu微滴之影響,使之粗糙度為所有膜層最低。50V之試樣(4.67 at.% Cu)擁有最高之H/E值,可以從腐蝕磨耗中看到其重量損失為所有薄膜中最少。在耐腐蝕試驗中,因為銅微滴較多的關係會造成腐蝕情況容易在微滴、孔洞與薄膜的交界上產生,導致含銅量較多之試樣較不耐腐蝕。在抗菌試驗方面,ZrTiCuN 薄膜因為有添加銅原子的關係使其抗菌率有明顯之提升,在含銅量達4.67 at.% 和 1.82 at.%時抗菌率達99%。
In this study, ZrTiCuN Hard muitilayer film was coated on AISI 316L stainless steel by cathodic arc deposition (CAD). And the method of changing the substrate bias voltage is used to control the content of copper (Cu) in the multilayer film and discussed ZrTiCuN hard film's structure, chemical composition, hardness, wear resistance, corrosion resistance, surface roughness, adhension and antibacterial resistance under different copper (Cu). The comparison of the ZrTiCuN with different copper content is expected to obtain a Three-resistance high quality film with wear resistance, corrosion resistance and antibacterial resistance.
The experimental results display that lower bias voltage will bring higer copper content. As the copper content increased, the hardness of the film also increased. In terms of roughness, ZrTiN has no effect of Cu droplets, making it the lowest roughness of all films. The 50V sample (4.67 at.% Cu) has the highest H/E value. It can be seen from the corrosion wear that the weight loss is the smallest of all the films. In the corrosion resistance test, because of the large number of copper droplets, corrosion may easily occur at the interface between the droplets, holes, and the film, it results in a sample with more copper content that has poor performance on corrosion resistance. In the antibacterial test, the antibacterial rate of ZrTiCuN film has been significantly improved due to the addition of copper atoms. The antibacterial rate reached 99% when the copper content reached 4.67 at.% (50V) and 1.82 at.% (100V).
中文摘要 i
英文摘要 ii
目錄 iv
圖目錄 vii
表目錄 x
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 不鏽鋼 4
2.1.1 不鏽鋼介紹 4
2.1.2 不鏽鋼種類 5
2.1.3 不鏽鋼的腐蝕 7
2.1.4 AISI316L 不鏽鋼 9
2.2 表面改質 9
2.3 物理氣相沉積 11
2.4 薄膜成核成長理論 13
2.5 薄膜微結構型態 15
2.6 陰極電弧沉積技術 18
2.6.1 起源和原理 18
2.6.2 真空電弧源 21
2.6.3 離子轟擊 23
2.6.4 微滴 25
2.6.5 陰極電弧沉積法之特性 27
2.7本研究相關鍍膜 29
2.7.1 氮化鋯 29
2.7.2 氮化鈦 30
2.7.3 TiZrN 32
2.7.4 氮化物參雜合金元素 32
2.7.5 多層膜 34
2.7.6 中介層 36
2.8 薄膜附著性檢測 37
2.9 薄膜硬度量測 39
2.10 薄膜磨耗行為 42
2.11 薄膜腐蝕行為 44
2.11.1 腐蝕的形式 46
2.12 薄膜之抗菌行為 49
第三章 實驗方法與步驟 50
3.1 實驗設計及流程 50
3.2 基材準備 52
3.3 鍍膜前處理 54
3.4 陰極電弧沉積製程 55
3.5 薄膜組成、結構和形貌分析 58
3.5.1 EPMA表面成分分析 58
3.5.2 XRD結構分析 59
3.5.3 表面形貌觀察 60
3.5.4 表面粗糙度量測 61
3.5.5 FE-SEM 橫截面觀察 64
3.6 鍍膜機械性質及附著性分析 65
3.6.1 奈米壓痕硬度試驗 65
3.6.2 Hv硬度試驗 66
3.6.3 附著性檢測 67
3.7 磨耗試驗 68
3.8 腐蝕磨耗試驗 69
3.9 極化試驗 70
3.10 浸泡試驗 72
3.11 水接觸角分析 73
3.12 抗菌試驗 74
第四章 結果與討論 76
4.1 薄膜成分分析 76
4.2 XRD結構分析 78
4.3 表面形貌觀察 80
4.4 表面粗糙度 83
4.5 薄膜橫截面觀察 85
4.6 奈米壓痕硬度試驗 89
4.7 維氏硬度試驗 91
4.8 附著性檢測 92
4.9 磨耗試驗 94
4.10腐蝕磨耗試驗 98
4.11 極化試驗 103
4.12 水接觸角試驗 107
4.13 抗菌試驗 114
第五章 結論 118
參考文獻 120
[1]D. Dinesh Kumar, Gobi Saravanan Kaliaraj, "Multifunctional zirconium nitride/copper multilayer coatings on medical grade 316L SS and titanium substrates for biomedical applications", Journal of the Mechanical Behavior of Biomedical Materials, Volume.77, pp.106-115, 2018.
[2]Jamal Hussaini, "Effect of Scourers on Utensils and Bacterial Survival”, Indian Journal of Science, vol. 1, no 1, pp. 54-57, 2012.
[3]林偉凱, "抗菌不鏽鋼的發展與展望", ITIS計畫,金屬中心,pp1-3 , 2016.
[4]Sirisha Mittapally, Ruheena Taranum, Sumaiya Parveen, "Metal ions as antibacterial agents", Journal of Drug Delivery and Therapeutics, vol.8, pp.411-419,2018.
[5]Hideyuki Kanematsu, Michiko Yoshitake, "Nanocomposite Coating for Antibacterial Purposes", Handbook of Nanoceramic and Nanocomposite Coatings and Materials, pp.489-513,2015.
[6]Cong Peng, Yan-Hui Zhao, Shu Jing Jin, Jingren Wang, Rui Liu, Hui Liu,Wenbo Shi, Sharafadeen Kunle Kolawole, Ling Ren, Baohai Yu, and Ke Yang, "Antibacterial TiCu/ TiCuN multilayer films with good corrosion resistance deposited by axial magnetic field-enhanced arc ion plating", ACS Appl Mater Interfaces, vol.11, pp.125-136,2018.
[7]P. Balashabadi, M.M. Larijani, E. Jafari-Khamse, H. Seyedi, "The role of Cu content on the structural properties and hardness of TiN-Cu nanocomposite film", Journal of Alloys and Compounds, vol.728, pp.863-871,2017.
[8]Haibo Wu, Xiangyu Zhang ,Xiaojing He, Meng Li,Xiaobo Huang, Ruiqiang Hang, Bin Tang, "Wear and corrosion resisitance of anti-bacterial Ti-Cu-N coatings on titanium implants", Applied Surface Science, vol.317,pp. 614-621,2014.
[9]M. Naddaf, B. Abdallah , M. Ahmad , M. A-Kharroub, "Influence of N2 partial pressure on structural and microhardness properties of TiN/ZrN multilayers deposited by Ar/N2 vacuum arc discharge",Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.381,pp.90-95,2016.
[10] J.C. Lippold, D.J. Kotecki, "Welding Metallurgy and Weldability of Stainless Steels", John Wiley & Sons Inc n=New York , pp2-4,2005.
[11] 許正勳, "不銹鋼食品容器性質介紹:淺談不鏽鋼之種類、磁特性及 應用", https://www.fda.gov.tw/TC/site.aspx?sid=3725, 衛生福利部食品藥物管理署網站,2016.
[12] W.F.Smith, "Structure and properties of engineering alloys",McGraw-Hill Science New York , pp.288-332,1993.
[13] 陳瑞凱、詹益愷, "不鏽鋼種類與材質磁性的關係", 國立清華大學
[14] D. Peckner, I.M. Bernstein: Handbook of Stainless Steel, McGraw-Hill Inc., New York, 1977.
[15] 謝曉華, 不鏽鋼在水溶液中的抗蝕性, 防蝕工程, vol.4,pp.30-37,1990.
[16] 陳鴻賓, 不鏽鋼的耐腐蝕性, 防蝕工程, vol.6, pp.44-60,1992.
[17] Arash Azimi Dastgerdi, Andrea Brenna, Marco Ormellese, MariaPia Pedeferri, Fabio Bolzoni, " Experimental design to study the influence of temperature, pH, and chloride concentration on the pitting and crevice corrosi-n of UNS S30403 stainless steel", Corrosion Science,vol.159, pp.108-116, 2019.
[18] 柯賢文, 腐蝕及其防制, 全華科技圖書股份有限公司, 台北市, pp.1-135,1994.
[19] Branko N.Popov, Corrosion Engineering Principles and Solvled Problem, Elsevier, pp.289-325,2015.
[20] PJ Andersen, Reference Module in Materials Science and Materials Engineering Comprehensive BiomaterialsII, Elsevier, vol.1,pp.1-18,2017.
[21] 羅永昶, 鑄造、熱處理技術現況與趨勢分析, 金屬中心, ch7, pp1-7,2004
[22] Luisa Quintino, "Overview of coating technologies", Surface Modification by Solid State Processing, pp.1-24,2014
[23] 鐘長祥,張嘉珍, 電弧離子鍍膜技術之原理與應用, 工業材料, pp.102-114,1996
[24] P.M.Martin, "Handbook of Deposition Technologies for Films and Coatings", 3rd, Wiliam Andrew, pp.22,73-79,679-715,2010
[25] Donald M. Mattox, "Handbook of Physical Vapor Deposition (PVD) Processing", 2nd, William Andrew, pp.1-398,2010
[26] 莊達人, VLSI製造技術,高立圖書公司, pp.150-161,1997
[27] M.Ohring, "Material Science of Thin Films", 2nd, Academic Press, pp.95-96,357-399,497-504,716-719,766-776,2002
[28] 羅吉宗, 薄膜科技與應用, 全華圖書股份有限公司,Ch.3,pp.38-44,2009
[29] S.R.Pulugurtha,D.G.Bhat,M.H.Gordon,J.Shultz, " Effect of substrate orientation on film properties using AC reactive magnetron sputtering", Surface and Coatings Technology, vol.202, pp.755-761,2007
[30] A.Anders, "Cathodic Arcs: From Fractal Spots to Energetic Condensations In Atomic, Optical, and Plasma Physics", Springer: New York, Vol. 50,pp.267-363, 2010
[31] Saleem Hashmi, Gilmar Ferreira Batalha, Chester J. Van Tyne, Bekir Yilbas, "Films and Coatings: Technology and Recent Development Comprehensive Materials Processing, Elsevier, vol.4, pp.3-55,2014.
[32] David M. Sanders, Andr´e Anders, "Review of cathodic arc deposition technology at the start of the new millennium", Surface and Coatings Technology, Vol 133–134, pp.78-90, 2000
[33] Raymond L. Boxman, David M. Sanders and Philip J. Martin, Handbook of Vacuum Arc Science and Technology, William Andrew, pp.774,1996.
[34] I.I. Beilis, "State of the theory of vacuum arcs", IEEE Transactions on Plasma Science, vol.29, pp.657-670,2001
[35] H.Randhawa, " Cathodic arc plasma deposition technology", Thin Solid Films, vol.167, pp.175-185,1998
[36] J. E. Daalder, " Diameter and Current Density of Single and Multiple Cathode Discharges in Vacuum", IEEE Transactions on Power Apparatus and Systems, Pas-93, pp.1747-1757,1974
[37] Donald M. Mattox, "Handbook of Physical Vapor Deposition (PVD) Processing", 2nd, William Andrew, pp287-289,2010
[38] 丁南宏, 真空技術與應用, 行政院國家科學委員會精密儀器發展中心出版, pp.96-98,2001.
[39] 陳柏諺,Ti-Al-Si-N沉積在不鏽鋼基材之高溫氧化性能研究,明道大學碩士論文,2009
[40] S.PalDey,S.C Deevi, "Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review", vol.342, pp.58-79,2003
[41] 沈家煌, 陰極電弧蒸鍍技術沉積Cr(N,O)/CrN四種薄膜之機械性質與耐腐蝕行為研究, 明道大學碩士論文,2007.
[42] P.JMartin,A Bendavid, " Review of the filtered vacuum arc process and materials deposition", Thin Solid Films, vol.394,pp.1-15,2001
[43] R.L. Boxman and S. Goldsmith, "Macroparticle contamination in cathodic arc coatings: generation, transport and control", Surface and Coatings Technology, vol52 , pp.39-50,1992.
[44] S.P. Lau, Y.H. Cheng , J.R. Shi , P. Cao , B.K. Tay , X. Shi, "Filtered cathodic vacuum arc deposition of thin film copper", Thin Solid Films, vol398-399 , pp.539-543,2001.
[45] J.S. Yoon, J. G. Han. “The ion current density and spectroscopic study in a straight magnetic filtering arc deposition system”, Surface and Coatings Technology, vol.94 , pp.201-206,1997.
[46] Clement Yuen,S.F.Yu,S.P.Lau,George C.K.Chen," Design and fabrication of ZnO light-emitting devices using filtered cathodic vacuum arc technique",vol.287,pp.204-212,2006.
[47] Andre´ Anders, " Approaches to rid cathodic arc plasmas of macroand nanoparticles: a review", vol120-121,1999
[48] N. A. G. Ahmed, "Ion Plating Technology Developments and Applications", John Wiley & Sons, Manchester, pp.53-55,1987.
[49] Acree Technologies Incorporated公司網站,
http://www.acreetech.com/index.php/pvd-technology/cathodic-arc-deposition
[50] Deng, J., Liu, J., Zhao, J., & Song, W, "Wear mechanisms of PVD ZrN coated tools in machining", International Journal of Refractory Metals & Hard Materials, vol.26 , pp.164–172,2008
[51] Vasylyev, M. A., Mordyuk, B. N., Sidorenko, S. I., Voloshko, S. M., Burmak, A.P.,Kruhlov, I. O, & Zakiev, V. I, " Characterization of ZrN coating low-temperature deposited on the preliminary Ar+ ions treated 2024 Al-alloy", Surface and Coatings Technology, vol.361, pp.413-424,2019
[52] E.W. Niu ∗, L. Li, G.H. Lv, H. Chen, W.R. Feng, S.H. Fan, S.Z. Yang, X.Z. Yang, " Influence of substrate bias on the structure and properties of ZrN films deposited by cathodic vacuum arc", Materials Science and Engineering A, vol.460-461,2007.
[53] Milošev, I., Strehblow, H.-H., & Navinšek, B, " Comparison of TiN, ZrN and CrN hard nitride coatings: Electrochemical and thermal oxidation", Thin Solid Films, vol.303, pp.246-254,1997.
[54] Xu, X. M., Wang, J., & Zhang, Q. Y, " Oxidation behavior of TiN/ZrN multilayers annealed in air", Thin Solid Films, vol.516, pp.1025-1028,2008.
[55] Zhefeng Lei, Qingqing Zhang, Xiaodong Zhu,Dayan Ma, Fei Ma, Zhongxiao Song, Yong Qing Fu, " Corrosion performance of ZrN/ZrO2 multilayer coatings deposited on 304 stainless steel using multi-arc ion plating", Applied Surface Science, vol.431, pp.170-176,2018.
[56] D. Valerini ,M.A. Signore,L.Tapfer, E. Piscopiello , U.Galietti , A.Rizzo, "Adhesion and wear of ZrN films sputtered on tungsten carbide substrates", vol.538, pp.42-47,2013.
[57] Akash Singh, N. Kumar,P.Kuppusami,,T.N. Prasanthi, P. Chandramohan, S. Dash, M.P. Srinivasan, E. Mohandas, A.K. Tyagi, " Tribological properties of sputter deposited ZrN coatings on titanium modified austenitic stainless steel", Wear, vol.280-281, pp.22-27,2012.
[58] Aditya Chauhan,Rahul Vaish, " Hard coating material selection using multi-criteria decision making", Materials & Design, vol.44, pp.240-245,2013.
[59] Jia-Hong Huang, Kun-Lin Kuo, Ge-Ping Yu, " Oxidation behavior and corrosion resistance of vacuum annealed ZrN-coated stainless steel", Surface & Coatings Technology, vol.358, pp.308-319, 2019.
[60] O. Baghriche, J. Kiwi, C. Pulgarin, R. Sanjinés, " Antibacterial Ag–ZrN surfaces promoted by subnanometric ZrN-clusters deposited by reactive pulsed magnetron sputtering", Journal of Photochemistry and Photobiology A: Chemistry, vol.229, pp.39-45,2012.
[61] D. Dinesh Kumar, Gobi Saravanan Kaliaraj, " Multifunctional zirconium nitride/copper multilayer coatings on medical grade 316L SS and titanium substrates for biomedical applications", Journal of the Mechanical Behavior of Biomedical Materials, vol.77, pp.106-115, 2018.
[62] Yin-Yu Chang , Heng-Li Huang , Ya-Chi Chen , Jui-Ching Weng , Chih-Ho Lai, " Characterization and antibacterial performance of ZrNO–Ag coatings", Surface & Coatings Technology, vol.231, pp.224-228,2013.
[63] Hugh O. Pierson: Handbook of Refractory Carbides and Nitrides, Noyes Publications, New Jersey, pp.156-208,1996.
[64] J.H.Huang, C.H.Ma, H.Chen, "Effect of Ti interlayer on the residual stress and texture development of TiN thin films", Surface and Coatings Technology, vol.200, pp.5937-5945,2006.
[65] W. Ensinger, "Low energy ion assist during deposition — an effective tool for controlling thin film microstructure", Nucl. Instr. Meth. B, vol.127-128, pp.796-808,1997.
[66] Z.G. Li, S. Miyake, M. Kumagai, H. Saito, Y. Muramatsu, " Hard nanocomposite Ti–Cu–N films prepared by d.c. reactive magnetron co-sputtering, Surface and Coatings Technology, vol.183, pp.62-68,2004.
[67]Y.H. Cheng,T. Browne, B. Heckerman, C. Bowman, V. Gorokhovsky, E.I. Meletis, " Mechanical and tribological properties of TiN/Ti multilayer coating", Surface & Coatings Technology, vol.205, pp.146-151,2010.
[68] Sajjad Ghasemi, Ali Shanaghi, Paul K. Chu, " Nano mechanical and wear properties of multi-layer Ti/TiN coatings deposited on Al 7075 by high-vacuum magnetron sputtering", Thin Solid Films, vol.638, pp.96-104,2017.
[69] K. Shukla, R. Rane, J. Alphonsa, P. Maity, S. Mukherjee, " Structural, mechanical and corrosion resistance properties of Ti/TiN bilayers deposited by magnetron sputtering on AISI 316L", Surface & Coatings Technology, vol.324, pp.167-174,2017.
[70] Wen-fang CUI, Feng-juan NIU, Yun-ling TAN, Gao-wu QIN, " Microstructure and tribocorrosion performance of nanocrystalline TiN graded coating on biomedical titanium alloy", vol.29, pp.1026-1035,2019.
[71] A. Rizzo, M.A. Signore, M. Penza, M.A. Tagliente, F. De Riccardis, E. Serra, " RF sputtering deposition of alternate TiN/ZrN multilayer hard coatings", Thin Solid Films, vol.515, PP.500-504,2006.
[72] M. Naddaf, B. Abdallah, M. Ahmad, M. A-Kharroub, " Influence of N2 partial pressure on structural and microhardness properties of TiN/ZrN multilayers deposited by Ar/N2 vacuum arc discharge", Nuclear Instruments and Methods in Physics Research B, vol.381, PP.90-95,2016.
[73] D. Arias, A. Devia, J. Velez, "Study of TiN/ZrN/TiN/ZrN multilayers coatings grown by cathodic arc technique", Surface & Coatings Technology, vol.204, PP.2999-3003,2010.
[74] J.C. Caicedo, C. Amaya, L. Yate, O. Nos, M.E. Gomez, P. Prieto, "Hard coating performance enhancement by using [Ti/TiN]n, [Zr/ZrN]n and [TiN/ZrN]n multilayer system", Materials Science and Engineering B, vol.171, pp.56-61,2010.
[75] H.S. Myung, H.M. Lee, L.R. Shaginyan, J.G. Han, "Microstructure and mechanical properties of Cu doped TiN superhard nanocomposite coatings", Surface and Coatings Technology, Vol.163-164 ,pp.591-596, 2003.
[76] I.T. Hong, C.H. Koo, "Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel" , Materials Science and Engineering A , Vol.393 ,pp.213-222,2005.
[77] K.N. Strafford, "Tribological properties of coatings—expectations, performance and the design dilemma" , Surface and Coatings Technology, vol.81, pp.106-117,1996.
[78] S.D.Latushkina, I.M. Romanov, A.G. Zhizhchenko, O.I.Posylkina, V. M. Komarovskaya, O.Yu. Piskunova, "Formation of Wear Resistant Nanostructured TiN/Cu Coatings", Journal of Friction and Wear, vol.37, pp.27-31, 2016.
[79] Philip C. Yashar, William D.Sproul, " Nanometer scale multilayered hard coatings" , Vacuum, vol.55, pp.179-190,1999.
[80] Bastian Lenz, Henning Hasselbruch, Andreas Mehner, " Automated evaluation of Rockwell adhesion tests for PVD coatings using convolutional neural networks" , Surface & Coatings Technology, vol.385,Article 125365 , 2020.
[81] 張瑞慶, "奈米壓痕技術與應用", 聖約翰科技大學機械系,2010
[82] W. C. Oliver and G. M. Phar, "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments", Journal of Materials Research, vol.7, pp.1564-1583,1992.
[83] K.Holmberg, A.Matthews, coating Tribology: Properties, Mechanisms, Techniques and Applications in surface Engineering, Elsevier Science, pp.41-75, 185-235,2009
[84] S. H. Ahn, J. H. Lee, J.G. Kim, J. G. Han, "Localized corrosion mechanicsms of the multilayered coatings related to growth defects", Surface and Coatings Technology, vol.177-178 , pp.638-644,2004.
[85] J.Kruger, S.Begum, " Corrosion of Metals : Overview", Elsevier, pp.1-10,2016.
[86] 陳嘉彌, "金屬的腐蝕理論及防蝕設計", 中學工藝教育,vol.16, no.6,pp.22-27.
[87] 朱榮聰、朱士亭, "析出銅離子對不銹鋼抗菌之影響," 遠東學報,vol.21, no.4, pp.707-717,2004.
[88] 張純誠,湯宏仁 "金屬銅(Metallic copper)在感染管制的應用",感染控制雜誌 vol.22, no.6, pp.326-329,2010.
[89] Paul M. Unterweiser , Heat Treater's Guide: Standard Practices and Procedures for Steel, American Society for metals, pp.414, 1982.
[90] 國立台灣大學貴儀中心 https://www.hic.ch.ntu.edu.tw/EPMA/epma_Application.html
[91] 台灣科技大學貴儀中心 https://www.sppic.ntust.edu.tw/files/15-1105-51522,c5703-1.php?Lang=zh-tw
[92] Richard K. Leach, Fundamental Principles of Engineering Nanometrology, 2nd , William Andrew, pp.246-261,2014.
[93] 大同大學材料工程學系暨研究所網址http://www.mse.ttu.edu.tw/files/11-1063-1853-1.php?Lang=zh-tw
[94] Lietai Yang, "Electrochemical techniques for corrosion monitoring", Techniques for Corrosion Monitoring, Woodhead Publishing, pp.49-83, 2008.
[95] Bekir S. Yilbas, Haider Ali, Muhammad R. Yousaf, Abdulah Alsharafi, " Hydrophobic Materials", Comprehensive Energy Systems Hydrophobic Materials, vol.2, pp.796-831, 2018.
[96] Akasaka, Minato-ku, " Antimicrobial products-Test for antimicrobial activity and efficacy(JIS Z 2801: 2000)", Japanese standards Association, Tokyo, 2001.
[97] Tong Chen, Lihua Yu, Hongbo Ju, Junhua Xu and Shinji Koyama, "Influence of Cu Content on the Microstructure, Mechanical, and Tribological Properties of ZrN–Cu Films",Nano brief reports and reviews, vol.13, Article.1850035,2018.
[98] A.Leyland, A.Matthews, "On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behavior", Wear, vol.246, pp.1-11,2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊