跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/04 09:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:簡川傑
研究生(外文):Chuan-Chieh Chien
論文名稱:奈米碳管及黏著劑在不同條件下對於奈米銀線薄膜電學光學影響
論文名稱(外文):On the Electrical and Optical Properties of Silver Nanowires under Transparent Adhesive Films and Carbon Nanotubes Mixtures
指導教授:魏哲弘
指導教授(外文):Chehung Wei
口試委員:魏哲弘
口試委員(外文):Chehung Wei
口試日期:2020-01-21
學位類別:碩士
校院名稱:大同大學
系所名稱:機械工程學系(所)
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:119
中文關鍵詞:附著性透光率導電性熱退火奈米碳管奈米銀線
外文關鍵詞:electrical conductivitythermal annealingcarbon nanotubesSilver nanowiresoptical transmittanceadhesion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
氧化銦錫由於導電透光性佳,一直為透明導電膜的主要材料。近年來,由於銦的產量有限及可撓式顯示器興起,奈米材料(奈米銀線、奈米碳管或石墨烯)成為取代氧化銦錫最具潛力材料。許多因素影響奈米材料作為透明導電膜性能,例如尺寸、分散性及後處理。本研究探討奈米銀線添加不同比例奈米碳管時,在不同條件下的電學性質及光學性質影響。
結果顯示,當奈米銀線添加奈米碳管,不僅降低片電阻率且提高與基板的附著力;當奈米碳管添加量增加至1.95 g時,其導電性提升達80%。電性提升機制為奈米碳管填補在奈米銀線網絡空隙,提供電子流通額外路徑,進而提升導電率。然而添加奈米碳管會降低透光率,每增加0.65 g奈米碳管,透光率約略減少5%,此乃奈米碳管網絡遮蔽光線,影響穿透率。此外,奈米銀線加入奈米碳管會提升薄膜整體附著力,膠帶測試顯示當奈米銀線加入0.65 g以上奈米碳管,附著力明顯提升,其機制為奈米碳管包覆及纏繞奈米銀線,增加與玻璃基板附著面積,進而提升附著力。
奈米銀線添加奈米碳管薄膜導電性可用熱退火處理進一步提升。當退火溫度低於300℃時,奈米銀線接點產生融合降低電阻,進而提升導電性。然而如果退火溫度超過300℃,奈米銀線因溫度過高,會斷裂產生球化,造成奈米銀線網絡之間失去連接形成斷路,但因熔點較高奈米碳管提供另外導電路徑,造成奈米銀線奈米碳管混合薄膜在300℃之導電性優於純奈米銀線。之外,熱退火更可燒除奈米銀線殘留之PVP及分散奈米碳管表面活性劑SDS,進而增進導電率。
本研究顯示,在奈米銀線添加適量奈米碳管,不僅提供替代導電網絡提升導電性,更可增進與基材之間附著力。當結合熱退火,奈米銀線接點產生熔接及消除PVP和表面活性劑可進一步提升導電性。
Indium tin oxide (ITO) is the primary material as conductive transparent film (CTF) due to its high optical transmittance and electric conductivity. However, the limited supply of indium and the rising demand of flexible display has called for alternative material for ITO. Nano-inks (silver nanowires (AgNWs), carbon nanotubes (CNTs) and graphene) has drawn attentions for the promising candidate to replace ITO. Many factors affect the performance of the nano-inks, such as material dimension, deposition method, dispersion and post-processing. In this thesis, we investigate the electrical and optical properties of AgNWs with varying CNTs mixing ratios.
The results show, the addition of CNTs in AgNWs not only increase the electric conductivity of but also enhance the adhesion. With 1.95 g CNTs mixing AgNWs, the conductivity is increased 80%. The mechanism is CNTs form alternative electric conductive paths which speeds up the current flow. The adding of CNTs slightly reduce the optical transmittance, with every 0.65 g increase, the transmittance reduces 5%. The opaqueness of CNTs network diminishes the light might be the reason. Tape test has exhibited the increased adhesion of AgNWs/CNTs with minimum 0.65 g CNTs addition. The entanglement of CNTs over AgNWs on glass substrate is a possible explanation.
The electrical conductivity of AgNWs/CNTs can be further increased by thermal annealing. When thermal annealing temperature is below 300℃, thermal fusion occurs among AgNWs junctions which reduce the junction resistance. However, if the thermal annealing temperature is above 300℃, AgNWs spheroidization occurs will induce the open circuit among AgNWs network. However, the higher melting point CNTs form alternative conductive paths which explains why there is limited conductivity in AgNWs/CNTs compared to none in AgNWs counterpart. In general, thermal annealing has the advantages of burning of non-conductive PVP or surfactants SDS. This is why thermal annealing increases electrical conductivity.
In summary, the addition of CNTs onto AgNWs not only form alternative conductive network, but also increase the adhesion. The AgNWs spheroidization and PVP/ surfactants burning in thermal annealing will further increase the electric conductivity.
誌謝 i
摘要 ii
ABSTRACT iv
目錄 vi
圖目錄 ix
表目錄 xviii
第一章 序論 1
1.1 前言 1
1.2 研究動機 4
1.3 文獻探討 5
第二章 實驗原理 12
2.1 熱處理原理 12
2.2 黏著劑原理 13
2.3 膠帶測試原理 14
第三章 研究方法 16
3.1 奈米銀線薄膜製作 16
3.2 奈米銀線與奈米碳管混合薄膜製作 17
3.3 透明黏著劑實驗 19
3.4 熱退火實驗 20
3.5 電學性質量測 21
3.6 光學性質量測 22
3.7 表面性質量測 22
3.8 附著性質量測 24
3.9 實驗流程與架構 25
第四章 結果討論 27
4.1 奈米碳管對於奈米銀線薄膜的影響 27
4.1.1 奈米銀線薄膜在添加奈米碳管的電學性質 27
4.1.2 奈米銀線薄膜在添加奈米碳管的光學性質 35
4.1.3 奈米銀線薄膜在添加奈米碳管的附著性質 39
4.1.4 奈米銀線薄膜在添加奈米碳管的表面性質 46
4.1.5 奈米銀線薄膜在添加奈米碳管的元素分析 56
4.2 熱退火對於奈米銀線奈米碳管混合薄膜的影響 58
4.2.1 熱退火對於奈米銀線奈米碳管混合薄膜的電學性質影響 58
4.2.2 熱退火對於奈米銀線奈米碳管混合薄膜的光學性質影響 73
4.2.3 熱退火對於奈米銀線奈米碳管混合薄膜的附著性質影響 78
4.2.4 熱退火對於奈米銀線奈米碳管混合薄膜的表面性質影響 83
4.2.5 熱退火對於奈米銀線奈米碳管混合薄膜的元素分析 99
4.3 添加透明黏著劑對於奈米銀線薄膜的影響 102
4.3.1 奈米銀線薄膜在添加透明黏著劑的電學及附著性質 102
4.3.2 奈米銀線薄膜在添加透明黏著劑的光學性質 103
4.3.3 奈米銀線薄膜在添加透明黏著劑的表面性質 104
第五章 結論與未來展望 107
5.1 結論 107
5.1.1 奈米碳管對奈米銀線薄膜影響 107
5.1.2 退火處理對奈米銀線碳管混合薄膜影響 108
5.1.3 添加透明黏著劑對奈米銀線合薄膜影響 108
5.2 未來展望 109
參考文獻 111
[1]Fraser, D. B., & Cook, H. D. (1972). Highly Conductive, Transparent Films of Sputtered In2-xSnxO3-y. Journal of the Electrochemical Society, 119(10), 1368.
[2]Raoufi, D., Kiasatpour, A., Fallah, H. R., & Rozatian, A. S. H. (2007). Surface characterization and microstructure of ITO thin films at different annealing temperatures. Applied Surface Science, 253(23), 9085-9090.
[3]Lee, D. H., Shim, S. H., Choi, J. S., & Yoon, K. B. (2008). The effect of electro-annealing on the electrical properties of ITO film on colorless polyimide substrate. Applied Surface Science, 254(15), 4650-4654.
[4]Leterrier, Y., Medico, L., Demarco, F., Manson J A E, Betz U, Escola M F, Olsson M K and Atamny F, (2004). Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays. Thin Solid Films, 460(1-2), 156-166.
[5]Lee, J. Y., Connor, S. T., Cui, Y., & Peumans, P. (2008). Solution-processed metal nanowire mesh transparent electrodes. Nano Letters, 8(2), 689-692.
[6]De, S., Higgins, T. M., Lyons, P. E., Doherty, E. M., Nirmalraj, P. N., Blau, J. J. Boland, J. N. Coleman (2009). Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano, 3(7), 1767-1774.
[7]Tokuno, T., Nogi, M., Karakawa, M., Jiu, J., Nge, T. T., Aso, Y., & Suganuma, K. (2011). Fabrication of silver nanowire transparent electrodes at room temperature. Nano Research, 4(12), 1215-1222.
[8]Liu, B. T., & Kuo, H. L. (2013). Graphene/silver nanowire sandwich structures for transparent conductive films. Carbon, 63, 390-396.
[9]Rathmell, A. R., & Wiley, B. J. (2011). The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates. Advanced Materials, 23(41), 4798-4803.
[10]Lyons, P. E., De, S., Elias, J., Schamel, M., Philippe, L., Bellew, A. T., Boland, J. J., & Coleman, J. N. (2011). High-performance transparent conductors from networks of gold nanowires. The Journal of Physical Chemistry Letters, 2(24), 3058-3062.
[11]Lee, J. Y., Connor, S. T., Cui, Y., & Peumans, P. (2008). Solution-processed metal nanowire mesh transparent electrodes. Nano Letters, 8(2), 689-692.
[12]Hecht, D. S., Hu, L., & Irvin, G. (2011). Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Advanced Materials, 23(13), 1482-1513.
[13]Islam, M. F., Rojas, E., Bergey, D. M., Johnson, A. T., & Yodh, A. G. (2003). High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Letters, 3(2), 269-273.
[14]Krause, B., Mende, M., Pötschke, P., & Petzold, G. (2010). Dispersability and particle size distribution of CNTs in an aqueous surfactant dispersion as a function of ultrasonic treatment time. Carbon, 48(10), 2746-2754.
[15]Hu, L., Kim, H. S., Lee, J. Y., Peumans, P., & Cui, Y. (2010). Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano, 4(5), 2955-2963.
[16]Rathmell, A. R., Bergin, S. M., Hua, Y. L., Li, Z. Y., & Wiley, B. J. (2010). The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Advanced Materials, 22(32), 3558-3563.
[17]Lee, J. Y., Connor, S. T., Cui, Y., & Peumans, P. (2008). Solution-processed metal nanowire mesh transparent electrodes. Nano Letters, 8(2), 689-692.
[18]Hu, L., Kim, H. S., Lee, J. Y., Peumans, P., & Cui, Y. (2010). Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano, 4(5), 2955-2963.
[19]Madaria, A. R., Kumar, A., Ishikawa, F. N., & Zhou, C. (2010). Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Research, 3(8), 564-573.
[20]Wei, C., & Fu. W. C. (2015). The Electrical and Optical Properties of Dielectrophoresis Purified Silver Nanowires Film as Transparent Electrode. Proceedings of 22nd International Display Workshop 2015, 385-386.
[21]Wei, C., & Peng, C. T. (2017). The Effect of Annealing Temperature on the Electrical and Optical Properties of Different Diameter AGNWS Films. Proceedings of IDW 2017, 1560-1563.
[22]Fievet, F., Lagier, J. P., & Figlarz, M. (1989). Preparing monodisperse metal powders in micrometer and submicrometer sizes by the polyol process. MRS Bulletin, 14(12), 29-34.
[23]Sun, Y., & Xia, Y. (2002). Shape-controlled synthesis of gold and silver nanoparticles. Science, 298(5601), 2176-2179.
[24]Sun, Y., Gates, B., Mayers, B., & Xia, Y. (2002). Crystalline silver nanowires by soft solution processing. Nano Letters, 2(2), 165-168.
[25]Sun, Y., Yin, Y., Mayers, B. T., Herricks, T., & Xia, Y. (2002). Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly (vinyl pyrrolidone). Chemistry of Materials, 14(11), 4736-4745.
[26]Sun, Y., Mayers, B., Herricks, T., & Xia, Y. (2003). Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Letters, 3(7), 955-960.
[27]Sun, Y., & Xia, Y. (2002). Large‐scale synthesis of uniform silver nanowires through a soft, self‐seeding, polyol process. Advanced Materials, 14(11), 833-837.
[28]Jiu, J., & Suganuma, K. (2016). Metallic Nanowires and Their Application. IEEE Transactions on Components, Packaging and Manufacturing Technology, 6(12), 1733-1751.
[29]Hu, J. Q., Chen, Q., Xie, Z. X., Han, G. B., Wang, R. H., Ren, B., Zhang, Y., Yang Z. L. & Tian, Z. Q. (2004). A simple and effective route for the synthesis of crystalline silver nanorods and nanowires. Advanced Functional Materials, 14(2), 183-189.
[30]Bergin, S. M., Chen, Y. H., Rathmell, A. R., Charbonneau, P., Li, Z. Y., & Wiley, B. J. (2012). The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale, 4(6), 1996-2004.
[31]Lee, J., Lee, P., Lee, H., Lee, D., Lee, S. S., & Ko, S. H. (2012). Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale, 4(20), 6408-6414.
[32]Lee, J., Lee, I., Kim, T. S., & Lee, J. Y. (2013). Efficient welding of silver nanowire networks without post‐processing. Small, 9(17), 2887-2894.
[33]Madaria, A. R., Kumar, A., Ishikawa, F. N., & Zhou, C. (2010). Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Research, 3(8), 564-573.
[34]Tokuno, T., Nogi, M., Karakawa, M., Jiu, J., Nge, T. T., Aso, Y., & Suganuma, K. (2011). Fabrication of silver nanowire transparent electrodes at room temperature. Nano Research, 4(12), 1215-1222.
[35]Jiu, J., Araki, T., Wang, J., Nogi, M., Sugahara, T., Nagao, S., Hoga, H., Suganuma, K., Nakazawa, E., Hara, M., Shinozaki K. & Uchida, H. (2014). Facile synthesis of very-long silver nanowires for transparent electrodes. Journal of Materials Chemistry A, 2(18), 6326-6330.
[36]Tokuno, T., Nogi, M., Jiu, J., Sugahara, T., & Suganuma, K. (2012). Transparent electrodes fabricated via the self-assembly of silver nanowires using a bubble template. Langmuir, 28(25), 9298-9302.
[37]Lee, J. Y., Connor, S. T., Cui, Y., & Peumans, P. (2010). Semitransparent organic photovoltaic cells with laminated top electrode. Nano Letters, 10(4), 1276-1279.
[38]Araki, T., Jiu, J., Nogi, M., Koga, H., Nagao, S., Sugahara, T., & Suganuma, K. (2014). Low haze transparent electrodes and highly conducting air dried films with ultra-long silver nanowires synthesized by one-step polyol method. Nano Research, 7(2), 236-245.
[39]Jiu, J., Nogi, M., Sugahara, T., Tokuno, T., Araki, T., Komoda, N., Suganuma, K., Uchidab, H., & Shinozaki, K. (2012). Strongly adhesive and flexible transparent silver nanowire conductive films fabricated with a high-intensity pulsed light technique. Journal of Materials Chemistry, 22(44), 23561-23567.
[40]Ryu, J., Kim, H. S., & Hahn, H. T. (2011). Reactive sintering of copper nanoparticles using intense pulsed light for printed electronics. Journal of Electronic Materials, 40(1), 42-50.
[41]Leem, D. S., Edwards, A., Faist, M., Nelson, J., Bradley, D. D., & De Mello, J. C. (2011). Efficient organic solar cells with solution‐processed silver nanowire electrodes. Advanced Materials, 23(38), 4371-4375.
[42]Selzer, F., Weiß, N., Kneppe, D., Bormann, L., Sachse, C., Gaponik, N., Eychmüller, A., Leoa, A., & Müller-Meskamp, L. (2015). A spray-coating process for highly conductive silver nanowire networks as the transparent top-electrode for small molecule organic photovoltaics. Nanoscale, 7(6), 2777-2783.
[43]Lee, S. J., Kim, Y. H., Kim, J. K., Baik, H., Park, J. H., Lee, J., Nam, J., Hyeok Park, J., Lee, T. W., Yi, G. R., & Cho, J. H. (2014). A roll-to-roll welding process for planarized silver nanowire electrodes. Nanoscale, 6(20), 11828-11834..
[44]Finn, D. J., Lotya, M., & Coleman, J. N. (2015). Inkjet printing of silver nanowire networks. ACS Applied Materials & Interfaces, 7(17), 9254-9261.
[45]Tokuno, T., Nogi, M., Jiu, J., & Suganuma, K. (2012). Hybrid transparent electrodes of silver nanowires and carbon nanotubes: a low-temperature solution process. Nanoscale Research Letters, 7(1), 281.
[46]Woo, J. Y., Kim, K. K., Lee, J., Kim, J. T., & Han, C. S. (2014). Highly conductive and stretchable Ag nanowire/carbon nanotube hybrid conductors. Nanotechnology, 25(28), 285203.
[47]Lee, J., Woo, J. Y., Kim, J. T., Lee, B. Y., & Han, C. S. (2014). Synergistically enhanced stability of highly flexible silver nanowire/carbon nanotube hybrid transparent electrodes by plasmonic welding. ACS Applied Materials & Interfaces, 6(14), 10974-10980.
[48]Lee, Y. R., Kwon, H., Lee, D. H., & Lee, B. Y. (2017). Highly flexible and transparent dielectric elastomer actuators using silver nanowire and carbon nanotube hybrid electrodes. Soft Matter, 13(37), 6390-6395.
[49]Stapleton, A. J., Afre, R. A., Ellis, A. V., Shapter, J. G., Andersson, G. G., Quinton, J. S., & Lewis, D. A. (2013). Highly conductive interwoven carbon nanotube and silver nanowire transparent electrodes. Science and Technology of Advanced Materials, 14(3), 035004.
[50]Han, H. J., Choi, Y. C., & Han, J. H. (2015). Preparation of transparent conducting films with improved haze characteristics using single-wall carbon nanotube-silver nanowire hybrid material. Synthetic Metals, 199, 219-222.
[51]Woo, J. S., Han, J. T., Jung, S., Jang, J. I., Kim, H. Y., Jeong, H. J., Jeong, S. Y., Baeg, K. J., & Lee, G. W. (2014). Electrically robust metal nanowire network formation by in-situ interconnection with single-walled carbon nanotubes. Scientific Reports, 4, 4804.
[52]Woo, J. S., Kim, B. K., Kim, H. Y., Lee, G. W., Park, S. Y., & Han, J. T. (2016). Carbon nanotube-induced migration of silver nanowire networks into plastic substrates via Joule heating for high stability. RSC Advances, 6(89), 86395-86400.
[53]Cai, Y., Piao, X., Yao, X., Gao, W., Nie, E., Zhang, Z., & Sun, Z. (2019). Transparent conductive film based on silver nanowires and single-wall carbon nanotubes for transparent heating films. Nanotechnology, 30(22), 225201.
[54]Alshammari, A. S. (2019). Improved electrical stability of silver NWs based hybrid transparent electrode interconnected with polymer functionalized CNTs. Materials Research Bulletin, 111, 245-250.
[55]Langley, D. (2014). Silver nanowire networks: effects of percolation and thermal annealing on physical properties (Doctoral dissertation, Université de Liège, Liège, Belgique). https://orbi.uliege.be/handle/2268/177659
[56]http://officesupplies.emilspec.com/A-A-113/index.html
[57]https://www.ipc.org/TM/2.4.1E.pdf
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊