|
[1]Fraser, D. B., & Cook, H. D. (1972). Highly Conductive, Transparent Films of Sputtered In2-xSnxO3-y. Journal of the Electrochemical Society, 119(10), 1368. [2]Raoufi, D., Kiasatpour, A., Fallah, H. R., & Rozatian, A. S. H. (2007). Surface characterization and microstructure of ITO thin films at different annealing temperatures. Applied Surface Science, 253(23), 9085-9090. [3]Lee, D. H., Shim, S. H., Choi, J. S., & Yoon, K. B. (2008). The effect of electro-annealing on the electrical properties of ITO film on colorless polyimide substrate. Applied Surface Science, 254(15), 4650-4654. [4]Leterrier, Y., Medico, L., Demarco, F., Manson J A E, Betz U, Escola M F, Olsson M K and Atamny F, (2004). Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays. Thin Solid Films, 460(1-2), 156-166. [5]Lee, J. Y., Connor, S. T., Cui, Y., & Peumans, P. (2008). Solution-processed metal nanowire mesh transparent electrodes. Nano Letters, 8(2), 689-692. [6]De, S., Higgins, T. M., Lyons, P. E., Doherty, E. M., Nirmalraj, P. N., Blau, J. J. Boland, J. N. Coleman (2009). Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano, 3(7), 1767-1774. [7]Tokuno, T., Nogi, M., Karakawa, M., Jiu, J., Nge, T. T., Aso, Y., & Suganuma, K. (2011). Fabrication of silver nanowire transparent electrodes at room temperature. Nano Research, 4(12), 1215-1222. [8]Liu, B. T., & Kuo, H. L. (2013). Graphene/silver nanowire sandwich structures for transparent conductive films. Carbon, 63, 390-396. [9]Rathmell, A. R., & Wiley, B. J. (2011). The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates. Advanced Materials, 23(41), 4798-4803. [10]Lyons, P. E., De, S., Elias, J., Schamel, M., Philippe, L., Bellew, A. T., Boland, J. J., & Coleman, J. N. (2011). High-performance transparent conductors from networks of gold nanowires. The Journal of Physical Chemistry Letters, 2(24), 3058-3062. [11]Lee, J. Y., Connor, S. T., Cui, Y., & Peumans, P. (2008). Solution-processed metal nanowire mesh transparent electrodes. Nano Letters, 8(2), 689-692. [12]Hecht, D. S., Hu, L., & Irvin, G. (2011). Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Advanced Materials, 23(13), 1482-1513. [13]Islam, M. F., Rojas, E., Bergey, D. M., Johnson, A. T., & Yodh, A. G. (2003). High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Letters, 3(2), 269-273. [14]Krause, B., Mende, M., Pötschke, P., & Petzold, G. (2010). Dispersability and particle size distribution of CNTs in an aqueous surfactant dispersion as a function of ultrasonic treatment time. Carbon, 48(10), 2746-2754. [15]Hu, L., Kim, H. S., Lee, J. Y., Peumans, P., & Cui, Y. (2010). Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano, 4(5), 2955-2963. [16]Rathmell, A. R., Bergin, S. M., Hua, Y. L., Li, Z. Y., & Wiley, B. J. (2010). The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Advanced Materials, 22(32), 3558-3563. [17]Lee, J. Y., Connor, S. T., Cui, Y., & Peumans, P. (2008). Solution-processed metal nanowire mesh transparent electrodes. Nano Letters, 8(2), 689-692. [18]Hu, L., Kim, H. S., Lee, J. Y., Peumans, P., & Cui, Y. (2010). Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano, 4(5), 2955-2963. [19]Madaria, A. R., Kumar, A., Ishikawa, F. N., & Zhou, C. (2010). Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Research, 3(8), 564-573. [20]Wei, C., & Fu. W. C. (2015). The Electrical and Optical Properties of Dielectrophoresis Purified Silver Nanowires Film as Transparent Electrode. Proceedings of 22nd International Display Workshop 2015, 385-386. [21]Wei, C., & Peng, C. T. (2017). The Effect of Annealing Temperature on the Electrical and Optical Properties of Different Diameter AGNWS Films. Proceedings of IDW 2017, 1560-1563. [22]Fievet, F., Lagier, J. P., & Figlarz, M. (1989). Preparing monodisperse metal powders in micrometer and submicrometer sizes by the polyol process. MRS Bulletin, 14(12), 29-34. [23]Sun, Y., & Xia, Y. (2002). Shape-controlled synthesis of gold and silver nanoparticles. Science, 298(5601), 2176-2179. [24]Sun, Y., Gates, B., Mayers, B., & Xia, Y. (2002). Crystalline silver nanowires by soft solution processing. Nano Letters, 2(2), 165-168. [25]Sun, Y., Yin, Y., Mayers, B. T., Herricks, T., & Xia, Y. (2002). Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly (vinyl pyrrolidone). Chemistry of Materials, 14(11), 4736-4745. [26]Sun, Y., Mayers, B., Herricks, T., & Xia, Y. (2003). Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Letters, 3(7), 955-960. [27]Sun, Y., & Xia, Y. (2002). Large‐scale synthesis of uniform silver nanowires through a soft, self‐seeding, polyol process. Advanced Materials, 14(11), 833-837. [28]Jiu, J., & Suganuma, K. (2016). Metallic Nanowires and Their Application. IEEE Transactions on Components, Packaging and Manufacturing Technology, 6(12), 1733-1751. [29]Hu, J. Q., Chen, Q., Xie, Z. X., Han, G. B., Wang, R. H., Ren, B., Zhang, Y., Yang Z. L. & Tian, Z. Q. (2004). A simple and effective route for the synthesis of crystalline silver nanorods and nanowires. Advanced Functional Materials, 14(2), 183-189. [30]Bergin, S. M., Chen, Y. H., Rathmell, A. R., Charbonneau, P., Li, Z. Y., & Wiley, B. J. (2012). The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale, 4(6), 1996-2004. [31]Lee, J., Lee, P., Lee, H., Lee, D., Lee, S. S., & Ko, S. H. (2012). Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale, 4(20), 6408-6414. [32]Lee, J., Lee, I., Kim, T. S., & Lee, J. Y. (2013). Efficient welding of silver nanowire networks without post‐processing. Small, 9(17), 2887-2894. [33]Madaria, A. R., Kumar, A., Ishikawa, F. N., & Zhou, C. (2010). Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Research, 3(8), 564-573. [34]Tokuno, T., Nogi, M., Karakawa, M., Jiu, J., Nge, T. T., Aso, Y., & Suganuma, K. (2011). Fabrication of silver nanowire transparent electrodes at room temperature. Nano Research, 4(12), 1215-1222. [35]Jiu, J., Araki, T., Wang, J., Nogi, M., Sugahara, T., Nagao, S., Hoga, H., Suganuma, K., Nakazawa, E., Hara, M., Shinozaki K. & Uchida, H. (2014). Facile synthesis of very-long silver nanowires for transparent electrodes. Journal of Materials Chemistry A, 2(18), 6326-6330. [36]Tokuno, T., Nogi, M., Jiu, J., Sugahara, T., & Suganuma, K. (2012). Transparent electrodes fabricated via the self-assembly of silver nanowires using a bubble template. Langmuir, 28(25), 9298-9302. [37]Lee, J. Y., Connor, S. T., Cui, Y., & Peumans, P. (2010). Semitransparent organic photovoltaic cells with laminated top electrode. Nano Letters, 10(4), 1276-1279. [38]Araki, T., Jiu, J., Nogi, M., Koga, H., Nagao, S., Sugahara, T., & Suganuma, K. (2014). Low haze transparent electrodes and highly conducting air dried films with ultra-long silver nanowires synthesized by one-step polyol method. Nano Research, 7(2), 236-245. [39]Jiu, J., Nogi, M., Sugahara, T., Tokuno, T., Araki, T., Komoda, N., Suganuma, K., Uchidab, H., & Shinozaki, K. (2012). Strongly adhesive and flexible transparent silver nanowire conductive films fabricated with a high-intensity pulsed light technique. Journal of Materials Chemistry, 22(44), 23561-23567. [40]Ryu, J., Kim, H. S., & Hahn, H. T. (2011). Reactive sintering of copper nanoparticles using intense pulsed light for printed electronics. Journal of Electronic Materials, 40(1), 42-50. [41]Leem, D. S., Edwards, A., Faist, M., Nelson, J., Bradley, D. D., & De Mello, J. C. (2011). Efficient organic solar cells with solution‐processed silver nanowire electrodes. Advanced Materials, 23(38), 4371-4375. [42]Selzer, F., Weiß, N., Kneppe, D., Bormann, L., Sachse, C., Gaponik, N., Eychmüller, A., Leoa, A., & Müller-Meskamp, L. (2015). A spray-coating process for highly conductive silver nanowire networks as the transparent top-electrode for small molecule organic photovoltaics. Nanoscale, 7(6), 2777-2783. [43]Lee, S. J., Kim, Y. H., Kim, J. K., Baik, H., Park, J. H., Lee, J., Nam, J., Hyeok Park, J., Lee, T. W., Yi, G. R., & Cho, J. H. (2014). A roll-to-roll welding process for planarized silver nanowire electrodes. Nanoscale, 6(20), 11828-11834.. [44]Finn, D. J., Lotya, M., & Coleman, J. N. (2015). Inkjet printing of silver nanowire networks. ACS Applied Materials & Interfaces, 7(17), 9254-9261. [45]Tokuno, T., Nogi, M., Jiu, J., & Suganuma, K. (2012). Hybrid transparent electrodes of silver nanowires and carbon nanotubes: a low-temperature solution process. Nanoscale Research Letters, 7(1), 281. [46]Woo, J. Y., Kim, K. K., Lee, J., Kim, J. T., & Han, C. S. (2014). Highly conductive and stretchable Ag nanowire/carbon nanotube hybrid conductors. Nanotechnology, 25(28), 285203. [47]Lee, J., Woo, J. Y., Kim, J. T., Lee, B. Y., & Han, C. S. (2014). Synergistically enhanced stability of highly flexible silver nanowire/carbon nanotube hybrid transparent electrodes by plasmonic welding. ACS Applied Materials & Interfaces, 6(14), 10974-10980. [48]Lee, Y. R., Kwon, H., Lee, D. H., & Lee, B. Y. (2017). Highly flexible and transparent dielectric elastomer actuators using silver nanowire and carbon nanotube hybrid electrodes. Soft Matter, 13(37), 6390-6395. [49]Stapleton, A. J., Afre, R. A., Ellis, A. V., Shapter, J. G., Andersson, G. G., Quinton, J. S., & Lewis, D. A. (2013). Highly conductive interwoven carbon nanotube and silver nanowire transparent electrodes. Science and Technology of Advanced Materials, 14(3), 035004. [50]Han, H. J., Choi, Y. C., & Han, J. H. (2015). Preparation of transparent conducting films with improved haze characteristics using single-wall carbon nanotube-silver nanowire hybrid material. Synthetic Metals, 199, 219-222. [51]Woo, J. S., Han, J. T., Jung, S., Jang, J. I., Kim, H. Y., Jeong, H. J., Jeong, S. Y., Baeg, K. J., & Lee, G. W. (2014). Electrically robust metal nanowire network formation by in-situ interconnection with single-walled carbon nanotubes. Scientific Reports, 4, 4804. [52]Woo, J. S., Kim, B. K., Kim, H. Y., Lee, G. W., Park, S. Y., & Han, J. T. (2016). Carbon nanotube-induced migration of silver nanowire networks into plastic substrates via Joule heating for high stability. RSC Advances, 6(89), 86395-86400. [53]Cai, Y., Piao, X., Yao, X., Gao, W., Nie, E., Zhang, Z., & Sun, Z. (2019). Transparent conductive film based on silver nanowires and single-wall carbon nanotubes for transparent heating films. Nanotechnology, 30(22), 225201. [54]Alshammari, A. S. (2019). Improved electrical stability of silver NWs based hybrid transparent electrode interconnected with polymer functionalized CNTs. Materials Research Bulletin, 111, 245-250. [55]Langley, D. (2014). Silver nanowire networks: effects of percolation and thermal annealing on physical properties (Doctoral dissertation, Université de Liège, Liège, Belgique). https://orbi.uliege.be/handle/2268/177659 [56]http://officesupplies.emilspec.com/A-A-113/index.html [57]https://www.ipc.org/TM/2.4.1E.pdf
|