(54.236.58.220) 您好!臺灣時間:2021/02/27 12:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:顏志穎
研究生(外文):Jhih-Ying Yan
論文名稱:奈米銀線與奈米碳管對PNIPAAm水膠物理性質之探討
論文名稱(外文):The Effects of AgNWs and SWCNTs on the Physical Properties of PNIPAAm Hydrogels
指導教授:魏哲弘
指導教授(外文):Chehung Wei
口試委員:魏哲弘
口試委員(外文):Chehung Wei
口試日期:2020-01-21
學位類別:碩士
校院名稱:大同大學
系所名稱:機械工程學系(所)
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:78
中文關鍵詞:PNIPAAm奈米碳管奈米銀線Power law
外文關鍵詞:Power lawPNIPAAmCNTsAgNWs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:27
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
熱敏性水膠已大量應用在生醫及傳感器,作為藥物及各種微小元件。本研究探討熱敏性聚合物異丙基丙烯醯胺單體(NIPAAm)做為複合水膠基底聚合成N-異丙基丙烯醯胺(PNIPAAm)及加入奈米銀線及奈米碳管之後的物性與電學性質,探討純水膠、奈米銀線複合水膠及奈米碳管複合水膠膨脹、收縮率及導電性。結果顯示,不同尺寸水膠及複合水膠其膨脹、收縮率不同。小尺寸水膠(直徑3mm)有較高膨脹收縮率,膨脹收縮率分別為139%與61%;大尺寸水膠(直徑7mm)水膠其膨脹與收縮率分別為126%與69%。當小尺寸水膠加入重量百分比1.45%奈米銀線其膨脹與收縮率分別為132%與71%,而加入重量百分比1.45%奈米碳管膨脹與收縮率變成123%與81%,大尺寸水膠呈現類似減少趨勢。為使實驗結果理論化,使用冪次函數擬合三種水膠。結果顯示不同尺寸模式常數而不同嵌入物水膠其冪次不同。此外當水膠加入奈米銀線與奈米碳管具導電性。奈米銀線複合水膠導電效果優於奈米碳管複合水膠,其片電阻分別為372Ω/m^2及31718Ω/m^2,奈米銀線優異導電性應該為主要原因。本研究發現,水膠膨脹與收縮率受到水膠尺寸與嵌入物影響,尺寸越大水膠其膨脹與收縮率較小,而水膠導電性則與其嵌入物性質有關。
Temperature-responsive hydrogel(poly N-isopropylacrylamide)(PNIPAAm) has been applied in biomedical field as drug delivery carrier and used as valve or actuator in nanotechnology. The performance in these applications depends on the material properties of hydrogel. In this work, N-Isopropylacrylamide(NIPAAm) is used to produce pNIPAAm with silver nanowire (AgNWs) and carbon nanotubes (CNTs) as the swelling-shrinking properties depends on the sample size and embedment. For smaller hydrogel sample (3 mm diameter), the swelling and shrinking ratio ratios are 139% and 61%, respectively. However, for larger sample size (7 mm diameter), the swelling and shrinking ratios are 139% and 61%, respectively. For 1.45wt% AgNWs embedded in hydrogel, the swelling and shrinking ratios reduce to 132% and 71% , respectively. For 1.45% CNTs counterpart, the swelling and shrinking ratios are 123% and 81%. To model shrinking phenomena, a power-law model is adopted to fit experimental data. The results indicate the power law exponent is affect by different embedment. The electrical properties of AgNWs/hydrogel and CNTs/hydrogel were measured by 4 point probe. The sheet resistances of AgNWs/hydrogel and CNTs/hydrogel are 372 Ohm/sq and 31728 Ohm/sq, respectively. The superior conductance of AgNWs might be the reason.
In summary, many factors affect the physical properties of hydrogels. The swelling-shrinking ratios depends on the sample size as well as the material embedded in the hydrogel. Meanwhile, AgNWs and CNTs embedment increase the conductivity of pNIPAAm.
誌謝 i
摘要 ii
ABSTRACT iii
目錄 v
圖目錄 vii
表目錄 xii
第一章 序論 1
1.1前言 1
1.2文獻探討 2
1.3研究動機 4
第二章 相關材料研究 6
2.1智慧型水膠 6
2.2奈米銀線 8
2.3奈米碳管 11
第三章 研究方法 14
3.1水膠製作 14
3.1.1 UV光接枝聚合及交聯反應 15
3.1.2實驗藥品 18
3.1.3複合水膠配置 21
3.2複合水膠面積效應及體積效應 22
3.3嵌入物與水膠膨潤收縮關係 23
3.4電學性質量測 24
3.5表面結構觀測 26
3.6實驗流程與架構 27
第四章 結果討論 28
4.1 PNIPAAm純水膠物理性質探討 28
4.2奈米銀線複合水膠物理性質探討 34
4.3奈米碳管複合水膠物理性質探討 40
4.4膨潤實驗 46
4.5純水膠與嵌入物水膠收縮性質分析 47
4.6奈米銀線複合水膠電學性質探討 62
4.7奈米碳管複合水膠電學性質探討 63
4.8水膠表面觀測 65
第五章 結論 74
參考文獻 75
[1]Callister, W. D. (2000). Fundamentals of Materials Science and Engineering. London: Wiley.
[2]Peppas, N. A. (1987). Hydrogels in Medicine and Pharmacy; Properties and Applications.
[3]Klouda, L., Mikos, A. G. (2008). Thermoresponsive Hydrogels in Biomedical Applications. European Journal of Pharmaceutics and Biopharmaceutics, 68(1), 34-45.
[4]Wichterle, O., Lim, D. (1960). Hydrophilic Gels for Biological Use. Nature, 185(4706), 117-118.
[5]Osada, Y., Ross-Murphy, S. B. (1993). Intelligent Gels. Scientific American, 268(5), 82-87.
[6]Makino, K., Hiyoshi, J., Ohshima, H. (2000). Kinetics of Swelling and Shrinking of Poly (N-isopropylacrylamide) Hydrogels at Different Temperatures. Colloids and Surfaces B: Biointerfaces, 19(2), 197-204.
[7]Peppas, N. A., Bures, P., Leobandung, W. S., & Ichikawa, H. (2000). Hydrogels in Pharmaceutical Formulations. European Journal of Pharmaceutics and Biopharmaceutics, 50(1), 27-46.
[8]Klouda, L., Mikos, A. G. (2008). Thermoresponsive Hydrogels in Biomedical Applications. European Journal of Pharmaceutics and Biopharmaceutics, 68(1), 34-45.
[9]Peppas, N. A., Colombo, P. (1997). Analysis of Drug Release Behavior from Swellable Polymer Carriers Using the Dimensionality Index. Journal of Controlled Release, 45(1), 35-40.
[10]De Santis, S., La Mesa, C., Masci, G. (2017). On the Upper Critical Solution Temperature of PNIPAAM in an Ionic Liquid: Effect of Molecular Weight, Tacticity and Water. Polymer, 120, 52-58.
[11]鄭晴云. (2010). 奈米碳管與 UV 光接枝效應對 PNIPAAm 水膠之 物理性質探討. 大同大學機械工程學系所學位論文, 1-84.
[12]王宗裕. (2011). 利用奈米壓痕探討含奈米碳管水膠及 PDMS 之機械性質. 大同大學機械工程學系所學位論文, 1-70.
[13]范國毅. (2012). 不同交聯度 PNIPAAm 感溫性水膠之機械及膨潤收縮性質探討. 大同大學機械工程學系所學位論文, 1-88.
[14]Zhang, X. Z., Wu, D. Q., & Chu, C. C. (2004). Synthesis, Characterization and Controlled Drug Release of Thermosensitive IPN–PNIPAAm Hydrogels. Biomaterials, 25(17), 3793-3805.
[15]Zhang, X. Z., Xu, X. D., Cheng, S. X., Zhuo, R. X. (2008). Strategies to Improve the Response Rate of Thermosensitive PNIPAAm Hydrogels. Soft Matter, 4(3), 385-391.
[16]謝玟儀. (2017). 自由基 random 聚合 P (NIPAAm-co-IAM) 微膠及其在鹼性環境下的螯合探討 (Doctoral dissertation, 國立台北科技大學).
[17]H. G. Schild, (1992) Poly(N-isopropylacrylamide): Experiment, Theory and Application” Progress in Polymer Science, Vol. 17, pp. 163–249.
[18]M. V. Deshmukh, A. A. Vaidya, M.G. Kulkarni ,(2000) LCST in Poly(N-isopropylacrylamide) Copolymers: High Resolution Proton NMR Investigations, Polymer, Vol. 41,pp.7951-7960
[19]Jana, N. R., Gearheart, L., Murphy, C. J. (2001). Wet Chemical Synthesis of Silver Nanorods and Nanowires of Controllable Aspect Ratio Electronic Supplementary Information (ESI) Available: UV–VIS Spectra of Silver Nanorods. Chemical Communications, (7), 617-618.
[20]Sun, Y., Mayers, B., Herricks, T., Xia, Y. (2003). Polyol Synthesis of Uniform Silver Nanowires: a Plausible Growth Mechanism and The Supporting Evidence. Nano Letters, 3(7), 955-960.
[21]Lee, J. Y., Connor, S. T., Cui, Y., Peumans, P. (2008) Solution-Processed Metal Nanowire Mesh Transparent Electrodes. Nano Letters, 8(2), 689-692.
[22]Sorel, S., Lyons, P. E., De, S., Dickerson, J. C., Coleman, J. N. (2012). The Dependence of The Optoelectrical Properties of Silver Nanowire Networks on Nanowire Length and Diameter. Nanotechnology, 23(18).
[23]Iijima, S. (1991). Helical Microtubules of Graphitic Carbon. Nature, 354(6348) 56.
[24]Iijima, S., Ichihashi, T. (1993). Single-Shell Carbon Nanotubes of 1-nm Diameter. Nature, 363(6430), 603.
[25]Li, X., Zhou, J., Liu, Z., Chen, J., Lü, S., Sun, H. M. (2014). A PNIPAAm-Based Thermosensitive Hydrogel Containing SWCNTs For Stem Cell Transplantation in Myocardial Repair. Biomaterials, 35(22), 5679-5688.
[26]ISO 21348 Definitions of Solar Irradiance Spectral Categories https://www.spacewx.com/pdf/SET_21348_2004.pdf
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔