跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/22 16:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉宗旻
研究生(外文):Tsung-Min Liu
論文名稱:突出與凹陷現象於塊材薄膜之有限元素分析
論文名稱(外文):A Finite Element Study on Bulk and Thin Film Materials Pile-up and Sink-in Phenonemon
指導教授:魏哲弘
指導教授(外文):Che-hung Wei
口試委員:魏哲弘
口試委員(外文):Che-hung Wei
口試日期:2020-07-24
學位類別:碩士
校院名稱:大同大學
系所名稱:機械工程學系(所)
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:43
中文關鍵詞:奈米壓痕突出凹陷楊氏係數降伏應力
外文關鍵詞:Young’s modulussink-inpile-upnanoindentationyield-strength
相關次數:
  • 被引用被引用:0
  • 點閱點閱:105
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
奈米壓痕試驗近幾年來已成為量測材料性質的重要工具,相對於其他量測方法,奈米壓痕可以量測材料硬度、楊氏係數、降伏強度、破壞韌性及殘留應力。當奈米壓痕量測硬度,會因為壓痕頭形狀與材料性質產生突出與凹陷等現象進而影響材料性質的量測。本研究探討不同條件與材料性質對突出與凹陷的影響。
在塊材量測,壓痕頭幾何形狀、摩擦係數、材料性質均會影響突出與凹陷的生成。以壓痕頭幾何形狀而言,當壓痕頭角度越大,會產生較大的橫向力進而抑制突出生成。材料摩擦係數也呈現類似現象,當摩擦係數越大,伴隨壓痕所產生的橫向力越大,進而降低突出高度。除壓痕頭形狀與摩擦係數,材料性質也影響突出與凹陷的生成。以降伏應力除楊氏係數比值而言,此比值增加會抑制突出高度,此現象說明當材料的降伏應力越大,突出較不易生成。當降伏應力除楊氏係數比值低於特定值時,突出現象會轉變成凹陷。
在薄膜量測時,摩擦係數、材料性質同樣影響突出與凹陷的生成。摩擦係數對薄膜影響如同塊材一般,較大摩擦係數可以減少突出。在考慮薄膜/底材系統,當降伏應力除楊氏係數比值在薄膜/底材相同,當比值越大,其突出越小並在特定值後轉成凹陷。當降伏應力除楊氏係數比值在薄膜/底材不同,底材比值變小會造成薄膜容易形成突出。薄膜/底材系統受到材料塑性影響,硬化指數增加會抑制突出形成。
突出與凹陷會影響硬度量測,了解影響這些現象的眾多因素,將有助於減少量測誤差的形成。
Nanoindentation has become a popular instrumentation tool due to its diverse usage. Many properties can be accessed by nanoindentation such as hardness, Young’s modulus, yield strength, fracture toughness and residual stress. In hardness measurement, the occurrence of pile-up or sink-in phenomenon affects the accuracy of hardness. In this thesis, we investigate factors that might generate pile-up or sink-in.
In bulk materials, indenter geometry, friction coefficient and materials properties all affect pile-up or sink-in formation. In indenter geometry, for higher half-included angle of the indenter, the less pile-up height is generated. The larger lateral force caused by obtuse indenter might be the reason. Higher friction coefficient that exhibits higher lateral force also show similar trend. Material property is another property that affects the occurrence of pile-up or sink-in. High yield-strength/Young’s modulus ratio tends to suppress the occurrence of pile-up. This implies high yield stress hinders pile-up formation. When such ratio is decreasing to certain value, the pile-up becomes sink-in.
In thin film/substrate materials, friction coefficient and materials properties play similar role. Like bulk materials, higher friction coefficient deters the occurrence of pile-up. For same yield-strength/Young’s modulus ratio, the behavior of thin film is similar to the bulk material counterpart. For distinct yield-strength/Young’s modulus ratio, lower substrate ratio will promote the pile-up formation in thin film. Plastic property like the power law hardening exponent also play a role in pile-up. Higher hardening exponent will suppress pile-up.
Pile-up and sink-in cause errors in hardness measurement. The understanding of the factors that affect pile-up and sink-in formation is helpful in minimizing the errors.
誌謝 i
摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 序論 1
1.1前言 1
1.2文獻回顧 1
1.3研究動機與目的 5
1.4本文架構 5
第二章 有限元素與基礎理論 6
2.1 有限元素 6
2.1.1有限元素法 6
2.1.2幾何設定 8
2.2奈米壓痕試驗 9
第三章 塊材在不同條件下之突出與凹陷之現象 12
3.1模型建立與參數設定 12
3.1.1模型建立 12
3.1.2參數設定 14
3.2 σy/E比值對於突出與凹陷之影響 14
3.3摩擦係數對於突出現象與凹陷之影響 17
3.4硬化指數與K值對於突出現象與凹陷之影響 20
3.5壓痕頭幾何型狀對突出與凹陷現象之影響 23
第四章 薄膜在不同條件下之突出與凹陷之現象 25
4.1模型建立 25
4.2σy/E比值對於突出與凹陷之影響 26
4.3摩擦係數對於突出現象與凹陷之影響 29
4.4硬化指數對於突出現象與凹陷之影響 32
第五章 結論 36
參考文獻 38
1.Tabor, D. The hardness of metals, Oxford University Press. (1951).
2.Tabor, D. Indentation hardness: Fifty years on a personal view (1996) Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 74 (5), pp. 1207-1212.
3.Bhushan B. Handbook of Micro/Nanotribology CRC, Boca Raton, FL. (1999).
4.Johnson, K.L. Contact Mechanics, Cambridge University Press. (1985).
5.Sneddon, I.N. The Relation between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile. (1965) International Journal of Engineering Science, 3, pp. 47–57.
6.R. B. King, (1987) Elastic analysis of some punch problems for a layered. International Journal of Solids and Structures. 23:1657-1664.
7.J.D. Bressan, A. Tramontin, C. Rosa, (2005) Modeling of nanoindentation of bulk and thin film by finite element method. Wear. 258(1-4 SPEC.ISS.):115-122.
8.Oliver, W.C. and Pharr, G.M. An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments. (1992) Journal of Materials Research, 7, pp. 1564–1583.
9.King, R. B. Elastic Analysis of Some Punch Problems for a Layered. (1987) International Journal of Solids and Structures, 23, pp. 1657-1664.
10.Burnett, P.J and Rickerby, D.S. The Mechanical properties of wear-resistant coatings I: modeling of hardness behavior. (1987) Thin Solid Films, 148, pp. 41-50.
11.Bolshakov, A. and Pharr, G.M. Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. (1998) Journal of Materials Research, 13 (4), pp. 1049-1058.
12.Cheng, Y.-T. and Cheng, C.-M. Relationships between hardness, elastic modulus, and the work of indentation. (1998) Applied Physics Letters, 73 (5), pp. 614-616.
13.Tang, K.C. and Arnell, R.D. Determination of coating mechanical properties using spherical indenters. (1999) Thin Solid Films, 355, pp. 263-269.
14.Menčík, J., Munz, D., Quandt, E., Weppelmann, E.R. and Swain, M.V. Determination of elastic modulus of thin layers using nanoindentation. (1997) Journal of Materials Research, 12 (9), pp. 2475-2484.
15.Burnett, P.J and Rickerby, D.S. The Mechanical properties of wear-resistant coatings II: experimental studies and interpretation of hardness. (1987) Thin Solid Films, 148, pp. 51-65.
16.Tsui, T. Y., Oliver, W. C. and Pharr, G.M. Indenter geometry effects on the measurement of mechanical properties by nanoindentation with sharp indenters. (1996) Materials Research Society Symposium-Proceedings, 436, pp. 534.
17.Hay, J. C., O’Hern, M.E. and Oliver, W.C. Importance of contact radius for substrate-independent property measurement of thin films. (1998) Materials Research Society Symposium-Proceedings, 522, pp. 27-32.
18.Hay, J.L., White, R.L., Lucas, B.N. and Oliver, W.C. Mechanical characterization of ultra-thin, hard-disk overcoats using scratch testing and depth-sensing indentation. (1998) Materials Research Society Symposium-Proceedings, 505, pp. 325-330.
19.Korsunsky, A.M, McGurk, M.R, Bull, S.J. and Page, T.F. On the hardness of coated systems. (1998) Surface and Coatings Technology, 99 (1-2), pp. 171-183.
20.Page, T.F., Pharr, G.M., Hay J.C., Oliver, W.C. Lucas, B.N., Hebert E. and Riester L. Nanoindentation characterization of coated systems: P:S2 - a new approach using the continuous stiffness technique. (1998) Materials Research Society Symposium-Proceedings, 522, pp. 53-64.
21.Tsui, T.Y. and Pharr, G.M. Substrate effects on nanoindentation mechanical property measurement of soft films on hard substrates. (1999) Journal of Materials Research, 14 (1), pp. 292-301.
22.Knapp, J.A., Follstaedt, D.M., Mayers, S.M., Barbour J.C. and Friedmann, T.A. Finite element modeling of nanoindentation. (1999) Journal of Applied Physics, 85 (3), pp. 1460-1474.
23.He, J.L. and Veprek, S. Finite element modeling of indentation into superhard coatings. (2003) Surface and Coatings Technology, 163-164, pp. 374-379.
24.Gu, Y., Nakamura,T., Prchlik, L.,Sampath, S. and Wallace, J. Micro-indentation and inverse analysis to characterize elastic-plastic graded materials .(2003) Materials Science and Engineering A, 345 (1-2), pp. 223-233.
25.Bückle, H. The Science of Hardness Testing and its Research Applications. (1973) American Society for Materials, OH, pp. 453-491.
26.Jonsson, B. and Hogmark, S. Hardness measurements of thin films. (1984) Thin Solid Films, 114, pp. 257-269.
27.Chicot, D. and Lesage, J. Absolute hardness of films and coatings. (1995) Thin Solid Films, 254 (1-2), pp. 123-130.
28.Chicot, D., Benarioua, Y. and Lesage, J. Hardness measurements of Ti and TiC multilayers: A model. (2000) Thin Solid Films, 359 (2), pp. 228-235.
29.Doerner, M.F. and Nix, W.D. A Method for Interpreting the Data from Depth-Sensing Indentation Instruments. (1986) Journal of Materials Research, 1, pp. 601–609.
30.Shan, Z. and Sitaraman, S.K. Elastic-plastic characterization of thin films using nanoindentation technique. (2003) Thin Solid Films, 437 (1-2), pp. 176-181.
31.Tayebi, N., Polycarpus, A.A. and Conry T.F. Effects of substrate on determination of hardness of thin films by nanoscratch and nanoindentation techniques. (2004) Journal of Materials Research, 19 (6), pp. 1791-1802.
32.Chen, X. and Vlassak, J.J. Numerical study on the measurement of thin film mechanical properties by means of nanoindentation. (2001) Journal of Materials Research, 16 (10), pp. 2974-2982.
33.Panich, N. and Sun, Y. Effect of penetration depth on indentation response of soft coatings on hard substrates: A finite element analysis. (2004) Surface and Coatings Technology, 182 (2-3), pp. 342-350.
34.Bressan, J.D., Tramontin, A. and Rosa, C. Modeling of nanoindentation of bulk and thin film by finite element method. (2005) Wear, 258 (1-4 SPEC. ISS.), pp. 115-122.
35.M. Lichinchi, C. Lenardi, J. Haupt, R. Vitali, (1998) Simulation of Berkovich nanoindentation experiments on thin films using finite element method. Thin Solid Films. 312 (1-2):240-248.
36.W.C. Oliver, G.M. Pharr, (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research. 7:1564-1992.
37.B. Shiari, R.E. Miller, D.D. Klug, (2007) Multiscale simulation of material removal processes at the nanoscale. Journal of the Mechanics and Physics of Solids. 55:2384-2405.
38.W.C. Oliver, G.M. Pharr, (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research. 7:1564-1992.
39.Bucaille, J. L., Stauss, S., Felder, E., & Michler, J. (2003). Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta materialia, 51(6), 1663-1678..
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊